Topological obstructions for vertex numbers of Minkowski sums

نویسنده

  • Raman Sanyal
چکیده

We show that for polytopes P1, P2, . . . , Pr ⊂ R, each having ni ≥ d + 1 vertices, the Minkowski sum P1 + P2 + · · · + Pr cannot achieve the maximum of ∏ i ni vertices if r ≥ d. This complements a recent result of Fukuda & Weibel (2006), who show that this is possible for up to d − 1 summands. The result is obtained by combining methods from discrete geometry (Gale transforms) and topological combinatorics (van Kampen–type obstructions) as developed in Rörig, Sanyal, and Ziegler (2007).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Vertex PI Index of Tetrathiafulvalene Dendrimers

General formulas are obtained for the vertex Padmakar-Ivan index (PIv) of tetrathiafulvalene (TTF) dendrimer, whereby TTF units we are employed as branching centers. The PIv index is a Wiener-Szeged-like index developed very recently. This topological index is defined as the summation of all sums of nu(e) and nv(e), over all edges of connected graph G.

متن کامل

Relative Stanley–reisner Theory and Lower Bound Theorems for Minkowski Sums

This note complements an earlier paper of the author by providing a lower bound theorem for Minkowski sums of polytopes. In [AS16], we showed an analogue of McMullen’s Upper Bound theorem for Minkowski sums of polytopes, estimating the maximal complexity of such a sum of polytopes. A common question in reaction to that research was the question for an analogue for the Barnette’s Lower Bound The...

متن کامل

Comparison of Topological Indices Based on Iterated ‘Sum’ versus ‘Product’ Operations

The Padmakar-Ivan (PI) index is a first-generation topological index (TI) based on sums over all edges between numbers of edges closer to one endpoint and numbers of edges closer to the other endpoint. Edges at equal distances from the two endpoints are ignored. An analogous definition is valid for the Wiener index W, with the difference that sums are replaced by products. A few other TIs are d...

متن کامل

Maximal f-vectors of Minkowski sums of large numbers of polytopes

It is known that in the Minkowski sum of r polytopes in dimension d, with r < d, the number of vertices of the sum can potentially be as high as the product of the number of vertices in each summand [2]. However, the number of vertices for sums of more polytopes was unknown so far. In this paper, we study sums of polytopes in general orientations, and show a linear relation between the number o...

متن کامل

An Object-Space Method for Calculating the Minkowski Sums of Simple 3D Objects

This paper presents an easy-to-implement and efficient method to calculate the Minkowski Sums of simple convex objects. The method is based on direct geometrical manipulation of planes in 3D space. The paper also explains the translational and topological invariance properties of Minkowski sums, their use in distance calculations and presents some performance results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2009