RELIABLE AND EFFICIENT A POSTERIORI ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF THE PARABOLIC p-LAPLACIAN
نویسندگان
چکیده
We generalize the a posteriori techniques for the linear heat equation in [Ver03] to the case of the nonlinear parabolic p-Laplace problem thereby proving reliable and efficient a posteriori error estimates for a fully discrete implicite Euler Galerkin finite element scheme. The error is analyzed using the so-called quasi-norm and a related dual error expression. This leads to equivalence of the error and the residual, which is the key property for proving the error bounds.
منابع مشابه
Adaptive Discontinuous Galerkin Methods for Fourth Order Problems
This work is concerned with the derivation of adaptive methods for discontinuous Galerkin approximations of linear fourth order elliptic and parabolic partial differential equations. Adaptive methods are usually based on a posteriori error estimates. To this end, a new residual-based a posteriori error estimator for discontinuous Galerkin approximations to the biharmonic equation with essential...
متن کاملAdaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems
We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of themixed finite element solutions for optimal control problems. Such a posteriori ...
متن کاملAdaptive Symmetric Interior Penalty Galerkin Method for Boundary Control Problems
We investigate an a posteriori error analysis of adaptive finite element approximations of linear-quadratic boundary optimal control problems under bilateral bound constraints, which act on a Neumann boundary condition. We use a symmetric interior penalty Galerkin (SIPG) method as discretization method. An efficient and reliable residual-type error estimator is introduced by invoking data oscil...
متن کاملA-posteriori Error Analysis for Mixed Formulation of Linear Parabolic Problems
In this paper we present a-posteriori error estimator for the mixed formulation of linear parabolic problem, used in designing an efficient adaptive algorithm. Our spacetime discretization consist of lowest order Raviart-Thomas finite element over graded meshes, and discontinuous Galerkin method with varying time-steps. Finally, several examples show that the proposed method is efficient and re...
متن کاملA posteriori error analysis of an augmented dual-mixed method in linear elasticity with mixed boundary conditions
We consider the augmented mixed finite element method introduced in [7] for the equations of plane linear elasticity with mixed boundary conditions. We develop an a posteriori error analysis based on the Ritz projection of the error and obtain an a posteriori error estimator that is reliable and efficient, but that involves a non-local term. Then, introducing an auxiliary function, we derive fu...
متن کامل