Thermoelectric plastics: from design to synthesis, processing and structure–property relationships
نویسندگان
چکیده
Thermoelectric plastics are a class of polymer-based materials that combine the ability to directly convert heat to electricity, and vice versa, with ease of processing. Potential applications include waste heat recovery, spot cooling and miniature power sources for autonomous electronics. Recent progress has led to surging interest in organic thermoelectrics. This tutorial review discusses the current trends in the field with regard to the four main building blocks of thermoelectric plastics: (1) organic semiconductors and in particular conjugated polymers, (2) dopants and counterions, (3) insulating polymers, and (4) conductive fillers. The design and synthesis of conjugated polymers that promise to show good thermoelectric properties are explored, followed by an overview of relevant structure-property relationships. Doping of conjugated polymers is discussed and its interplay with processing as well as structure formation is elucidated. The use of insulating polymers as binders or matrices is proposed, which permit the adjustment of the rheological and mechanical properties of a thermoelectric plastic. Then, nanocomposites of conductive fillers such as carbon nanotubes, graphene and inorganic nanowires in a polymer matrix are introduced. A case study examines poly(3,4-ethylenedioxythiophene) (PEDOT) based materials, which up to now have shown the most promising thermoelectric performance. Finally, a discussion of the advantages provided by bulk architectures e.g. for wearable applications highlights the unique advantages that thermoelectric plastics promise to offer.
منابع مشابه
Coefficient of Performance Optimization of a Single Stage Thermoelectric Cooler
In thermoelectric coolers (TECs) applied external voltage potential is generated to a temperature difference based on the Peltier effect. Main and basic structure of TECs is in the form of single stage device. Due to the low efficiency, especially low coefficient of performance (COP) of thermoelectric coolers, optimal design of geometrical parameters of such devices is vital. For this purpose, ...
متن کاملEffect of conjugate heat transfer in designing thermoelectric beverage cooler
Peltier technology opens new opportunities for special applications. In the current project, this technology was applied to design and fabricate a portable thermoelectric beverage cooler and thermoelectric cup. The simulation and results of the experiment showed that the common beverage cooler is not a suitable design for ignoring the effect of natural convection in cooling. In our thermoel...
متن کاملProcessing-Structure-Property Relationships in Solid-State Shear Pulverization: Parametric Study of Specific Energy
Solid-state shear pulverization (SSSP) is a unique processing technique for mechanochemical modification of polymers, compatibilization of polymer blends, and exfoliation and dispersion of fillers in polymer nanocomposites. A systematic parametric study of the SSSP technique is conducted to elucidate the detailed mechanism of the process and establish the basis for a range of current and future...
متن کاملEffect of conjugate heat transfer in designing thermoelectric beverage cooler
Peltier technology opens new opportunities for specialapplications. In the current project, this technology was appliedto design and fabricate a portable thermoelectric beveragecooler and thermoelectric cup. The simulation and results of theexperiment showed that the common beverage cooler is not asuitable design for ignoring the effect of natural convection in<br ...
متن کاملSynthesis of the Nano structured Zinc Oxide Using the Soft template of Cylea barbata miers Extract and its Promising Property for Dye Adsorbent
Nanostructured zinc oxide (ZnO) was successfully synthesized by precipitation method using the extract of Cylea barbata Miers (CBM) leaves as a soft template after 3 h of calcinations in furnace at 500oC in the open air. Characterization results showed that the nanostructured ZnO had hexagonal wurtzite structure with space group P63mc and nano-scale particle diameter. It was suggested that the ...
متن کامل