Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes.
نویسندگان
چکیده
The light organ crypts of the squid Euprymna scolopes permit colonization exclusively by the luminous bacterium Vibrio fischeri. Because the crypt interior remains in contact with seawater, the squid must not only foster the specific symbiosis, but also continue to exclude other bacteria. Investigation of the role of the innate immune system in these processes revealed that macrophage-like haemocytes isolated from E. scolopes recognized and phagocytosed V. fischeri less than other closely related bacterial species common to the host's environment. Interestingly, phagocytes isolated from hosts that had been cured of their symbionts bound five times more V. fischeri cells than those from uncured hosts. No such change in the ability to bind other species of bacteria was observed, suggesting that the host adapts specifically to V. fischeri. Deletion of the gene encoding OmpU, the major outer membrane protein of V. fischeri, increased binding by haemocytes from uncured animals to the level observed for haemocytes from cured animals. Co-incubation with wild-type V. fischeri reduced this binding, suggesting that they produce a factor that complements the mutant's defect. Analyses of the phagocytosis of bound cells by fluorescence-activated cell sorting indicated that once binding to haemocytes had occurred, V. fischeri cells are phagocytosed as effectively as other bacteria. Thus, discrimination by this component of the squid immune system occurs at the level of haemocyte binding, and this response: (i) is modified by previous exposure to the symbiont and (ii) relies on outer membrane and/or secreted components of the symbionts. These data suggest that regulation of host haemocyte binding by the symbiont may be one of many factors that contribute to specificity in this association.
منابع مشابه
Obtaining Hemocytes from the Hawaiian Bobtail Squid Euprymna scolopes and Observing their Adherence to Symbiotic and Non-Symbiotic Bacteria
Studies concerning the role of the immune system in mediating molecular signaling between beneficial bacteria and their hosts have, in recent years, made significant contributions to our understanding of the co-evolution of eukaryotes with their microbiota. The symbiotic association between the Hawaiian bobtail squid, Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri has been u...
متن کاملRoles of bacterial regulators in the symbiosis between Vibrio fischeri and Euprymna scolopes.
In a symbiosis, two or more evolutionarily distinct organisms communicate with one another in order to co-exist and co-adapt in their shared environment. The mutualistic symbiosis between the bioluminescent marine bacterium Vibrio fischeri and the Hawaiian squid Euprymna scolopes provides a model system that allows scientists to examine the mechanisms by which this communication occurs (McFall-...
متن کاملFlrA, a -Dependent Transcriptional Activator in Vibrio fischeri, Is Required for Motility and Symbiotic Light-Organ Colonization
Flagellum-mediated motility of Vibrio fischeri is an essential factor in the bacterium’s ability to colonize its host, the Hawaiian squid Euprymna scolopes. To begin characterizing the nature of the flagellar regulon, we have cloned a gene, designated flrA, from V. fischeri that encodes a putative -dependent transcriptional activator. Genetic arrangement of the flrA locus in V. fischeri is simi...
متن کاملPopulation structure between environmentally transmitted vibrios and bobtail squids using nested clade analysis.
Squids from the genus Euprymna (Cephalopoda: Sepiolidae) and their symbiotic bacteria Vibrio fischeri form a mutualism in which vibrios inhabit a complex light organ within the squid host. A host-mediated daily expulsion event seeds surrounding seawater with symbiotically capable V. fischeri that environmentally colonize newly hatched axenic Euprymna juveniles. Competition experiments using nat...
متن کاملSymbiotic characterization of Vibrio fischeri ES114 mutants that display enhanced luminescence in culture.
Vibrio fischeri ES114 is a bioluminescent symbiont of the squid Euprymna scolopes. Like most isolates from E. scolopes, ES114 produces only dim luminescence outside the host, even in dense cultures. We previously identified mutants with brighter luminescence, and here we report their symbiotic phenotypes, providing insights into the host environment.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental microbiology
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2009