The N-terminus zinc finger domain of Xenopus SIP1 is important for neural induction, but not for suppression of Xbra expression.

نویسندگان

  • Kazuhiro R Nitta
  • Shuji Takahashi
  • Yoshikazu Haramoto
  • Masakazu Fukuda
  • Kousuke Tanegashima
  • Yasuko Onuma
  • Makoto Asashima
چکیده

Smad-interacting protein-1 (SIP1), also known as deltaEF2, ZEB2 and zfhx1b, is essential for the formation of the neural tube and the somites. Overexpression of Xenopus SIP1 causes ectopic neural induction via inhibition of bone morphogenetic protein (BMP) signaling and inhibition of Xbra expression. Here, we report the functional analyses of 4 domain-deletion mutants of XSIP1. Deletion of the N-terminus zinc finger domain suppressed neural induction and BMP inhibition, but these were not affected by deletion of the other domains (the Smad binding domain, the DNA-binding homeodomain together with the CtBP binding site and the C-terminus zinc finger). Therefore SIP1 does not inhibit BMP signaling by binding to Smad proteins. In contrast, all of the deletion constructs inhibited Xbra expression. These results suggest that the N-terminus zinc finger domain of XSIP1 has an important role in neural induction and that Xbra suppression occurs via a mechanism separate from the neural inducing activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates.

Cellular competence is defined as a cell's ability to respond to signaling cues as a function of time. In Xenopus laevis, cellular responsiveness to fibroblast growth factor (FGF) changes during development. At blastula stages, FGF induces mesoderm, but at gastrula stages FGF regulates neuroectoderm formation. A Xenopus Oct3/4 homologue gene, XLPOU91, regulates mesoderm to neuroectoderm transit...

متن کامل

Dynamic regulation of Brachyury expression in the amphibian embryo by XSIP1

Xenopus Brachyury (Xbra) plays a key role in mesoderm formation during early development. One factor thought to be involved in the regulation of Xbra is XSIP1, a zinc finger/homeodomain-like DNA-binding protein that belongs to the deltaEF1 family of transcriptional repressors. We show here that Xbra and XSIP1 are co-expressed at the onset of gastrulation, but that expression subsequently refine...

متن کامل

The Spemann organizer-expressed zinc finger gene Xegr-1 responds to the MAP kinase/Ets-SRF signal transduction pathway.

The transcriptional activity of a set of genes, which are all expressed in overlapping spatial and temporal patterns within the Spemann organizer of Xenopus embryos, can be modulated by peptide growth factors. We identify Xegr-1, a zinc finger protein-encoding gene, as a novel member of this group of genes. The spatial expression characteristics of Xegr-1 during gastrulation are most similar to...

متن کامل

New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites.

SIP1, a Smad-interacting protein, and deltaEF1, a transcriptional repressor involved in skeletal and T-cell development, belong to the same family of DNA binding proteins. SIP1 and deltaEF1 contain two separated clusters of zinc fingers, one N-terminal and one C-terminal. These clusters show high sequence homology and are highly conserved between SIP1 and deltaEF1. Each zinc finger cluster bind...

متن کامل

Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning.

During the development of Xenopus laevis, maternal mRNAs and proteins stored in the egg direct early patterning events such as the specification of the dorsoventral axis and primary germ layers. In an expression screen to identify maternal factors important for early development, we isolated a truncated cDNA for maternal Zic2 (tZic2), encoding a zinc-finger transcription factor. The predicted t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The International journal of developmental biology

دوره 51 4  شماره 

صفحات  -

تاریخ انتشار 2007