Higher-order interhelical spatial interactions in membrane proteins.

نویسندگان

  • Larisa Adamian
  • Ronald Jackups
  • T Andrew Binkowski
  • Jie Liang
چکیده

Higher-order interactions are important for protein folding and assembly. We introduce the concept of interhelical three-body interactions as derived from Delaunay triangulation and alpha shapes of protein structures. In addition to glycophorin A, where triplets are strongly correlated with protein stability, we found that tight interhelical triplet interactions exist extensively in other membrane proteins, where many types of triplets occur far more frequently than in soluble proteins. We developed a probabilistic model for estimating the value of membrane helical interaction triplet (MHIT) propensity. Because the number of known structures of membrane proteins is limited, we developed a bootstrap method for determining the 95% confidence intervals of estimated MHIT values. We identified triplets that have high propensity for interhelical interactions and are unique to membrane proteins, e.g. AGF, AGG, GLL, GFF and others. A significant fraction (32%) of triplet types contains triplets that may be involved in interhelical hydrogen bond interactions, suggesting the prevalent and important roles of H-bond in the assembly of TM helices. There are several well-defined spatial conformations for triplet interactions on helices with similar parallel or antiparallel orientations and with similar right-handed or left-handed crossing angles. Often, they contain small residues and correspond to the regions of the closest contact between helices. Sequence motifs such as GG4 and AG4 can be part of the three-body interactions that have similar conformations, which in turn can be part of a higher-order cooperative four residue spatial motif observed in helical pairs from different proteins. In many cases, spatial motifs such as serine zipper and polar clamp are part of triplet interactions. On the basis of the analysis of the archaeal rhodopsin family of proteins, tightly packed triplet interactions can be achieved with several different choices of amino acid residues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins.

Helix-helix packing plays a critical role in maintaining the tertiary structures of helical membrane proteins. By examining the overall distribution of voids and pockets in the transmembrane (TM) regions of helical membrane proteins, we found that bacteriorhodopsin and halorhodopsin are the most tightly packed, whereas mechanosensitive channel is the least tightly packed. Large residues F, W, a...

متن کامل

Interhelical hydrogen bonds and spatial motifs in membrane proteins: polar clamps and serine zippers.

Polar and ionizable amino acid residues are frequently found in the transmembrane (TM) regions of membrane proteins. In this study, we show that they help to form extensive hydrogen bond connections between TM helices. We find that almost all TM helices have interhelical hydrogen bonding. In addition, we find that a pair of contacting TM helices is packed tighter when there are interhelical hyd...

متن کامل

Vibrational coupling between helices influences the amide I infrared absorption of proteins: application to bacteriorhodopsin and rhodopsin.

The amide I spectrum of multimers of helical protein segments was simulated using transition dipole coupling (TDC) for long-range interactions between individual amide oscillators and DFT data from dipeptides (la Cour Jansen et al. J. Chem. Phys.2006, 125, 44312) for nearest neighbor interactions. Vibrational coupling between amide groups on different helices shift the helix absorption to highe...

متن کامل

Centrality of Weak Interhelical H-bonds in Membrane Protein Functional Assembly and Conformational Gating

Our analysis demonstrates that backbone-mediated interhelical hydrogen-bonds cluster laterally in the conserved core of transmembrane helical proteins. Each residue's propensity to bear these interactions is in correlation with the residue's packing-value scale; giving biophysical meaning to this phenomenological scale. Residues participating in such an intersubunit, structurally conserved H-bo...

متن کامل

Structural determinants of transmembrane helical proteins.

We identify a structural feature of transmembrane helical proteins that restricts their conformational space and suggests a new way of understanding the construction and stability of their native states. We show that five kinds of well-known specific favorable interhelical interactions (hydrogen bonds, aromatic interactions, salt bridges, and two interactions from packing motifs) precisely dete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 327 1  شماره 

صفحات  -

تاریخ انتشار 2003