Lithium-induced nephrogenic diabetes insipidus: renal effects of amiloride.

نویسندگان

  • Jennifer J Bedford
  • Susan Weggery
  • Gaye Ellis
  • Fiona J McDonald
  • Peter R Joyce
  • John P Leader
  • Robert J Walker
چکیده

BACKGROUND AND OBJECTIVES Polyuria, polydipsia, and nephrogenic diabetes insipidus have been associated with use of psychotropic medications, especially lithium. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS The impact of psychotropic medications on urinary concentrating ability and urinary aquaporin 2 (AQP2) excretion was investigated after overnight fluid deprivation, and over 6 h after 40 microg of desmopressin (dDAVP), in patients on lithium (n = 45), compared with those on alternate psychotropic medications (n = 42). RESULTS Those not on lithium demonstrated normal urinary concentrating ability (958 +/- 51 mOsm/kg) and increased urinary excretion of AQP2 (98 +/- 21 fmol/micromol creatinine) and cAMP (410 +/- 15 pmol/micromol creatinine). Participants taking lithium were divided into tertiles according to urinary concentrating ability: normal, >750 mOsm/kg; partial nephrogenic diabetes insipidus (NDI), 750 to 300 mOsm/kg; full NDI, <300 mOsm/kg. Urinary AQP2 concentrations were 70.9 +/- 13.6 fmol/micromol creatinine (normal), 76.5 +/- 10.4 fmol/micromol creatinine (partial NDI), and 27.3 fmol/micromol creatinine (full NDI). Impaired urinary concentrating ability and reduced urinary AQP2, cAMP excretion correlated with duration of lithium therapy. Other psychotropic agents did not impair urinary concentrating ability. Eleven patients on lithium were enrolled in a randomized placebo-controlled crossover trial investigating the actions of amiloride (10 mg daily for 6 wk) on dDAVP-stimulated urinary concentrating ability and AQP2 excretion. Amiloride increased maximal urinary osmolality and AQP2 excretion. CONCLUSIONS By inference, amiloride-induced reduction of lithium uptake in the principal cells of the collecting duct improves responsiveness to AVP-stimulated translocation of AQP2 to the apical membrane of the principal cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amiloride restores renal medullary osmolytes in lithium-induced nephrogenic diabetes insipidus.

In lithium-induced nephrogenic diabetes insipidus (NDI), alterations in renal medullary osmolyte concentrations have been assumed but never investigated. Amiloride can modify lithium-induced NDI, but the impact of amiloride in lithium-induced NDI on renal medullary osmolytes, aquaporins, and urea transporters is unknown and is the basis of this study. Rats fed lithium (60 mmol/kg dry food) over...

متن کامل

Use of acetazolamide in lithium-induced nephrogenic diabetes insipidus: a case report

Lithium-induced nephrogenic diabetes insipidus (Li-NDI) is a rare and difficult-to-treat condition. A study in mice and two recent papers describe the use of acetazolamide in Li-NDI in 7 patients (a case report and a 6 patient series). We describe the case of a 63-year-old woman with bipolar disorder treated with lithium and no previous history of diabetes insipidus. She was hospitalized due to...

متن کامل

Acetazolamide Attenuates Lithium-Induced Nephrogenic Diabetes Insipidus.

To reduce lithium-induced nephrogenic diabetes insipidus (lithium-NDI), patients with bipolar disorder are treated with thiazide and amiloride, which are thought to induce antidiuresis by a compensatory increase in prourine uptake in proximal tubules. However, thiazides induced antidiuresis and alkalinized the urine in lithium-NDI mice lacking the sodium-chloride cotransporter, suggesting that ...

متن کامل

Segment-specific ENaC downregulation in kidney of rats with lithium-induced NDI.

Lithium-induced nephrogenic diabetes insipidus is associated with increased renal sodium excretion in addition to severe urinary concentrating defects. However, the molecular basis for this altered renal sodium excretion remains undefined. The amiloride-sensitive sodium channel (ENaC) is expressed in the renal connecting tubule and collecting duct and is essential in renal regulation of body so...

متن کامل

Hydrochlorothiazide attenuates lithium-induced nephrogenic diabetes insipidus independently of the sodium-chloride cotransporter.

Lithium is the most common cause of nephrogenic diabetes insipidus (Li-NDI). Hydrochlorothiazide (HCTZ) combined with amiloride is the mainstay treatment in Li-NDI. The paradoxical antidiuretic action of HCTZ in Li-NDI is generally attributed to increased sodium and water uptake in proximal tubules as a compensation for increased volume loss due to HCTZ inhibition of the Na-Cl cotransporter (NC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical journal of the American Society of Nephrology : CJASN

دوره 3 5  شماره 

صفحات  -

تاریخ انتشار 2008