Receptor for activated C-kinase 1, a novel interaction partner of type II bone morphogenetic protein receptor, regulates smooth muscle cell proliferation in pulmonary arterial hypertension.
نویسندگان
چکیده
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by selective elevation of pulmonary arterial pressure. The pathological hallmark of PAH is the narrowing of pulmonary arterioles secondary to endothelial cell dysfunction and smooth muscle cell proliferation. Heterozygous mutations in BMPR2, encoding the type II bone morphogenetic protein receptor (BMPRII), were identified in PAH, suggesting that alterations to BMPRII function are involved in disease onset and/or progression. METHODS AND RESULTS We identified the receptor for activated C-kinase (RACK1) as a novel interaction partner of BMPRII by yeast 2-hybrid analyses using the kinase domain of BMPRII as a bait. Glutathione-S-transferase pull-down and coimmunoprecipitation confirmed the interaction of RACK1 with BMPRII in vitro and in vivo. RACK1-BMPRII interaction was reduced when kinase domain mutations occurring in patients with PAH were introduced to BMPRII. Immunohistochemistry of lung sections from PAH and control patients and immunofluorescence analysis of primary pulmonary arterial smooth muscle cells demonstrated colocalization of BMPRII and RACK1 in vivo. Quantitative reverse-transcription polymerase chain reaction and Western blot analysis showed significant downregulation of RACK1 expression in the rat model of monocrotaline-induced PAH but not in pulmonary arterial smooth muscle cells from PAH patients. Abrogation of RACK1 expression in pulmonary arterial smooth muscle cells led to decreased Smad1 phosphorylation and increased proliferation, whereas overexpression of RACK1 led to increased Smad1 phosphorylation and decreased proliferation. CONCLUSIONS RACK1, a novel interaction partner of BMPRII, constitutes a new negative regulator of pulmonary arterial smooth muscle cell proliferation, suggesting a potential role for RACK1 in the pathogenesis of PAH.
منابع مشابه
BMPR-II deficiency elicits pro-proliferative and anti-apoptotic responses through the activation of TGFβ-TAK1-MAPK pathways in PAH.
Pulmonary arterial hypertension (PAH) is a cardiovascular disorder associated with enhanced proliferation and suppressed apoptosis of pulmonary arterial smooth muscle cells (PASMCs). Heterozygous mutations in the type II receptor for bone morphogenetic protein (BMPR2) underlie the majority of the inherited and familial forms of PAH. The transforming growth factor β (TGFβ) pathway is activated i...
متن کاملBMPR-II deficiency elicits pro-proliferative and anti-apoptotic responses through the activation of TGFb-TAK1-MAPK pathways in PAH
Pulmonary arterial hypertension (PAH) is a cardiovascular disorder associated with enhanced proliferation and suppressed apoptosis of pulmonary arterial smooth muscle cells (PASMCs). Heterozygous mutations in the type II receptor for bone morphogenetic protein (BMPR2) underlie the majority of the inherited and familial forms of PAH. The transforming growth factor b (TGFb) pathway is activated i...
متن کاملDysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension.
Mutations in the bone morphogenetic protein type II receptor gene (BMPR2) are the major genetic cause of familial pulmonary arterial hypertension (FPAH). Although smooth muscle cell proliferation contributes to the vascular remodeling observed in PAH, the role of BMPs in this process and the impact of BMPR2 mutation remains unclear. Studies involving normal human pulmonary artery smooth muscle ...
متن کاملExpression of mutant BMPR-II in pulmonary endothelial cells promotes apoptosis and a release of factors that stimulate proliferation of pulmonary arterial smooth muscle cells
Mutations in the bone morphogenetic protein type II receptor gene (BMPR-II) are the major cause of heritable pulmonary arterial hypertension (PAH). Although both endothelial and smooth muscle cell BMPR-II dysfunction have been seen to contribute to pulmonary hypertension in vivo, little is known about the impact of BMPR-II mutation on the interaction between these two important cell types. We e...
متن کاملFamilial Pulmonary Arterial Hypertension Dysfunctional Smad Signaling Contributes to Abnormal Smooth Muscle Cell Proliferation
Mutations in the bone morphogenetic protein type II receptor gene (BMPR2) are the major genetic cause of familial pulmonary arterial hypertension (FPAH). Although smooth muscle cell proliferation contributes to the vascular remodeling observed in PAH, the role of BMPs in this process and the impact of BMPR2 mutation remains unclear. Studies involving normal human pulmonary artery smooth muscle ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 115 23 شماره
صفحات -
تاریخ انتشار 2007