HCV NS5A Protein Containing Potential Ligands for Both Src Homology 2 and 3 Domains Enhances Autophosphorylation of Src Family Kinase Fyn in B Cells
نویسندگان
چکیده
Hepatitis C virus (HCV) infects B lymphocytes and induces mixed cryoglobulinemia and B cell non-Hodgkin's lymphoma. The molecular mechanism for the pathogenesis of HCV infection-mediated B cell disorders remains obscure. To identify the possible role for HCV nonstructural 5A (NS5A) protein in B cells, we generated the stable B cell lines expressing Myc-His tagged NS5A. Immunoprecipitation study in the presence or absence of pervanadate (PV) implied that NS5A was tyrosine phosphorylated by pervanadate (PV) treatment of the cells. Therefore we examined pull-down assay by using glutathione S-transferase (GST)-fusion proteins of various Src homology 2 (SH2) domains, which associates with phosphotyrosine within a specific amino acid sequence. The results showed that NS5A specifically bound to SH2 domain of Fyn from PV-treated B cells in addition to Src homology 3 (SH3) domain. Substitution of Arg(176) to Lys in the SH2 domain of Fyn abrogated this interaction. Deletion mutational analysis demonstrated that N-terminal region of NS5A was not required for the interaction with the SH2 domain of Fyn. Tyr(334) was identified as a tyrosine phosphorylation site in NS5A. Far-western analysis revealed that SH2 domain of Fyn directly bound to NS5A. Fyn and NS5A were colocalized in the lipid raft. These results suggest that NS5A directly binds to the SH2 domain of Fyn in a tyrosine phosphorylation-dependent manner. Lastly, we showed that the expression of NS5A in B cells increased phosphorylation of activation loop tyrosine in the kinase domain of Fyn. NS5A containing ligand for both SH2 and SH3 domains enhances an aberrant autophosphorylation and kinase activity of Fyn in B cells.
منابع مشابه
The hepatitis C virus NS5A protein binds to members of the Src family of tyrosine kinases and regulates kinase activity.
The hepatitis C virus (HCV) non-structural NS5A protein has been shown to associate with a variety of cellular signalling proteins. Of particular interest is the observation that a highly conserved C-terminal polyproline motif in NS5A was able to interact with the Src-homology 3 (SH3) domains of the adaptor protein Grb2. As it has previously been shown that specific polyproline motifs can inter...
متن کاملProline Residues in Cd28 and the Src Homology (Sh)3 Domain of Lck Are Required for T Cell Costimulation
The Src family tyrosine kinases Lck and Fyn are critical for signaling via the T cell receptor. However, the exact mechanism of their activation is unknown. Recent crystal structures of Src kinases suggest that an important mechanism of kinase activation is via engagement of the Src homology (SH)3 domain by proline-containing sequences. To test this hypothesis, we identified several T cell memb...
متن کاملNS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling.
Although hepatitis C virus (HCV) infection is an emerging global epidemic causing severe liver disorders, the molecular mechanisms of HCV pathogenesis remain elusive. The NS5A nonstructural protein of HCV contains several proline-rich sequences consistent with Src homology (SH) 3-binding sites found in cellular signaling molecules. Here, we demonstrate that NS5A specifically bound to growth fac...
متن کاملMelatonin Induced Schwann Cell Proliferation and Dedifferentiation Through NF-ĸB, FAKDependent but Src-Independent Pathways
Background: Peripheral nerve injury (PNI) is a common condition that compromises motor and sensory functions. Peripheral nerves are known to have regenerative capability and the pineal hormone, melatonin, is known to aid nerve regeneration. However, the role of Schwann cells and the pathways involved remain unclear. Thus, the aim of this study is to identify the effects of melatonin on Schwann ...
متن کاملThe Src-Family Kinase, Fyn, Regulates the Activation of Phosphatidyllnositol 3-Kinase in an Interleukin 2-responsive T Cell Line
The proliferation of antigen-activated T cells is mediated by the T cell-derived growth factor, interleukin 2 (IL-2). The biochemical signaling cascades initiating IL-2-induced growth are dependent upon protein ryrosine kinase (FFK) activity. One IL-2-regulated FTK implicated in this cascade is the Src-family kinase, Fyn. Previous studies have described a physical association between Fyn and a ...
متن کامل