Recognizing Textual Entailment Using Lexical Similarity

نویسندگان

  • Valentin Jijkoun
  • Maarten de Rijke
چکیده

We describe our participation in the PASCAL-2005 Recognizing Textual Entailment Challenge. Our method is based on calculating “directed” sentence similarity: checking the directed “semantic” word overlap between the text and the hypothesis. We use frequency-based term weighting in combination with two different lexical similarity measures. Our best run shows 0.55 accuracy on the test data, although the difference between our two runs is not significant. We found remarkably different optimal threshold values for the development and test data. We argue that, in addition to accuracy, precision and recall are valuable measures to consider for textual entailment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognizing Textual Entailment Is lexical similarity enough?

We describe the system we used at the PASCAL-2005 Recognizing Textual Entailment Challenge. Our method for recognizing entailment is based on calculating “directed” sentence similarity: checking the directed “semantic” word overlap between the text and the hypothesis. We use frequency-based term weighting in combination with two different lexical similarity measures. Although one version of the...

متن کامل

Learning Textual Entailment using SVMs and String Similarity Measures

We present the system that we submitted to the 3rd Pascal Recognizing Textual Entailment Challenge. It uses four Support Vector Machines, one for each subtask of the challenge, with features that correspond to string similarity measures operating at the lexical and shallow syntactic level.

متن کامل

Learning Parse-Free Event-Based Features for Textual Entailment Recognition

We propose new parse-free event-based features to be used in conjunction with lexical, syntactic, and semantic features of texts and hypotheses for Machine Learning-based Recognizing Textual Entailment. Our new similarity features are extracted without using shallow semantic parsers, but still lexical and compositional semantics are not left out. Our experimental results demonstrate that these ...

متن کامل

Sagan in TAC2009: Using Support Vector Machines in Recognizing Textual Entailment and TE Search Pilot task

This paper describes the Sagan system in the context of the Fifth Pascal Recognizing Textual Entailment (RTE-5) Evaluation Challenge and the new Textual Entailment Search Pilot Task. The system employs a Support Vector Machine classifier with a set of 32 features, which includes lexical and semantic similarity for both two-way and three-way classification tasks. Additionally, we show an approac...

متن کامل

Binary-class and Multi-class based Textual Entailment System

The article presents the experiments carried out as part of the participation in Recognizing Inference in TExt (RITE-2) @NTCIR10 for Japanese. RITE-2 has four subtasks Binary-class (BC) subtask for Japanese and Chinese, Multi-class (MC) subtask for Japanese and Chinese, Entrance Exam for Japanese and RITE4QA for Chinese. We have submitted three runs in BC subtask for Japanese (JA) (one run), Ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005