Omega-3 fatty acids prevent pressure overload-induced cardiac fibrosis through activation of cyclic GMP/protein kinase G signaling in cardiac fibroblasts.

نویسندگان

  • Jinghai Chen
  • Gregory C Shearer
  • Quanhai Chen
  • Chastity L Healy
  • April J Beyer
  • Vijaya B Nareddy
  • A Martin Gerdes
  • William S Harris
  • Timothy D O'Connell
  • Dajun Wang
چکیده

BACKGROUND Omega-3 polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid) from fish oil ameliorate cardiovascular diseases. However, little is known about the effects of ω-3 polyunsaturated fatty acids on cardiac fibrosis, a major cause of diastolic dysfunction and heart failure. The present study assessed the effects of ω-3 polyunsaturated fatty acids on cardiac fibrosis. METHODS AND RESULTS We assessed left ventricular fibrosis and pathology in mice subjected to transverse aortic constriction after the consumption of a fish oil or a control diet. In control mice, 4 weeks of transverse aortic constriction induced significant cardiac dysfunction, cardiac fibrosis, and cardiac fibroblast activation (proliferation and transformation into myofibroblasts). Dietary supplementation with fish oil prevented transverse aortic constriction-induced cardiac dysfunction and cardiac fibrosis and blocked cardiac fibroblast activation. In heart tissue, transverse aortic constriction increased active transforming growth factor-β1 levels and phosphorylation of Smad2. In isolated adult mouse cardiac fibroblasts, transforming growth factor-β1 induced cardiac fibroblast transformation, proliferation, and collagen synthesis. Eicosapentaenoic acid and docosahexaenoic acid increased cyclic GMP levels and blocked cardiac fibroblast transformation, proliferation, and collagen synthesis. Eicosapentaenoic acid and docosahexaenoic acid blocked phospho-Smad2/3 nuclear translocation. DT3, a protein kinase G inhibitor, blocked the antifibrotic effects of eicosapentaenoic acid and docosahexaenoic acid. Eicosapentaenoic acid and docosahexaenoic acid increased phosphorylated endothelial nitric oxide synthase and endothelial nitric oxide synthase protein levels and nitric oxide production. CONCLUSION Omega-3 fatty acids prevent cardiac fibrosis and cardiac dysfunction by blocking transforming growth factor-β1-induced phospho-Smad2/3 nuclear translocation through activation of the cyclic GMP/protein kinase G pathway in cardiac fibroblasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload–induced maladaptive cardiac remodeling

N-3 polyunsaturated fatty acids (PUFAs) have potential cardiovascular benefit, although the mechanisms underlying this effect remain poorly understood. Fat-1 transgenic mice expressing Caenorhabditis elegans n-3 fatty acid desaturase, which is capable of producing n-3 PUFAs from n-6 PUFAs, exhibited resistance to pressure overload-induced inflammation and fibrosis, as well as reduced cardiac fu...

متن کامل

Atrial Natriuretic Peptide Inhibits Transforming Growth Factor –Induced Smad Signaling and Myofibroblast Transformation in Mouse Cardiac Fibroblasts

This study tested the hypothesis that activation of atrial natriuretic peptide (ANP)/cGMP/protein kinase G signaling inhibits transforming growth factor (TGF)1–induced extracellular matrix expression in cardiac fibroblasts and defined the specific site(s) at which this molecular merging of signaling pathways occurs. Left ventricular hypertrophy and fibrosis, collagen deposition, and myofibrobla...

متن کامل

Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts.

This study tested the hypothesis that activation of atrial natriuretic peptide (ANP)/cGMP/protein kinase G signaling inhibits transforming growth factor (TGF)-beta1-induced extracellular matrix expression in cardiac fibroblasts and defined the specific site(s) at which this molecular merging of signaling pathways occurs. Left ventricular hypertrophy and fibrosis, collagen deposition, and myofib...

متن کامل

Protein Kinase G Iα Inhibits Pressure Overload–Induced Cardiac Remodeling and Is Required for the Cardioprotective Effect of Sildenafil In Vivo

BACKGROUND Cyclic GMP (cGMP) signaling attenuates cardiac remodeling, but it is unclear which cGMP effectors mediate these effects and thus might serve as novel therapeutic targets. Therefore, we tested whether the cGMP downstream effector, cGMP-dependent protein kinase G Iα (PKGIα), attenuates pressure overload-induced remodeling in vivo. METHODS AND RESULTS The effect of transaortic constri...

متن کامل

Atrial natriuretic peptide locally counteracts the deleterious effects of cardiomyocyte mineralocorticoid receptor activation.

BACKGROUND The endocrine balance between atrial natriuretic peptide (ANP) and the renin-angiotensin-aldosterone system is critical for the maintenance of arterial blood pressure and volume homeostasis. This study investigated whether a cardiac imbalance between ANP and aldosterone, toward increased mineralocorticoid receptor (MR) signaling, contributes to adverse left ventricular remodeling in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 123 6  شماره 

صفحات  -

تاریخ انتشار 2011