On connected automorphism groups of algebraic varieties

نویسنده

  • Michel Brion
چکیده

Let X be a normal projective algebraic variety, G its largest connected automorphism group, and A(G) the Albanese variety of G . We determine the isogeny class of A(G) in terms of the geometry of X . In characteristic 0, we show that the dimension of A(G) is the rank of every maximal trivial direct summand of the tangent sheaf of X . Also, we obtain an optimal bound for the dimension of the largest anti-affine closed subgroup of G (which is the smallest closed subgroup that maps onto A(G)).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Infinite Dimensional Algebraic Transformation Groups

We explore orbits, rational invariant functions, and quotients of the natural actions of connected, not necessarily finite dimensional subgroups of the automorphism groups of irreducible algebraic varieties. The applications of the results obtained are given.

متن کامل

On the Makar-limanov, Derksen Invariants, and Finite Automorphism Groups of Algebraic Varieties

A simple method of constructing a big stock of algebraic varieties with trivial Makar-Limanov invariant is described, the Derksen invariant of some varieties is computed, the generalizations of the Makar-Limanov and Derksen invariants are introduced and discussed, and some results on the Jordan property of automorphism groups of algebraic varieties are obtained.

متن کامل

Jordan Property for Non-linear Algebraic Groups and Projective Varieties

A century ago, Camille Jordan proved that the complex general linear group GLn(C) has the Jordan property: there is a Jordan constant Cn such that every finite subgroup H ≤ GLn(C) has an abelian subgroup H1 of index [H : H1] ≤ Cn. We show that every connected algebraic group G (which is not necessarily linear) has the Jordan property with the Jordan constant depending only on dimG, and that the...

متن کامل

Internal Topology on MI-groups

An MI-group is an algebraic structure based on a generalization of the concept of a monoid that satisfies the cancellation laws and is endowed with an invertible anti-automorphism representing inversion. In this paper, a topology is defined on an MI-group $G$ under which $G$ is  a topological MI-group. Then we will identify open, discrete and compact MI-subgroups. The connected components of th...

متن کامل

Quotients by non-reductive algebraic group actions

Geometric invariant theory (GIT) was developed in the 1960s by Mumford in order to construct quotients of reductive group actions on algebraic varieties and hence to construct and study a number of moduli spaces, including, for example, moduli spaces of bundles over a nonsingular projective curve [26, 28]. Moduli spaces often arise naturally as quotients of varieties by algebraic group actions,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013