Results of the WMT17 Neural MT Training Task
نویسندگان
چکیده
This paper presents the results of the WMT17 Neural MT Training Task. The objective of this task is to explore the methods of training a fixed neural architecture, aiming primarily at the best translation quality and, as a secondary goal, shorter training time. Task participants were provided with a complete neural machine translation system, fixed training data and the configuration of the network. The translation was performed in the English-to-Czech direction and the task was divided into two subtasks of different configurations—one scaled to fit on a 4GB and another on an 8GB GPU card. We received 3 submissions for the 4GB variant and 1 submission for the 8GB variant; we provided also our run for each of the sizes and two baselines. We translated the test set with the trained models and evaluated the outputs using several automatic metrics. We also report results of the human evaluation of the submitted systems.
منابع مشابه
Findings of the 2017 Conference on Machine Translation (WMT17)
This paper presents the results of the WMT17 shared tasks, which included three machine translation (MT) tasks (news, biomedical, and multimodal), two evaluation tasks (metrics and run-time estimation of MT quality), an automatic post-editing task, a neural MT training task, and a bandit learning task.
متن کاملResults of the WMT17 Metrics Shared Task
This paper presents the results of the WMT17 Metrics Shared Task. We asked participants of this task to score the outputs of the MT systems involved in the WMT17 news translation task and Neural MT training task. We collected scores of 14 metrics from 8 research groups. In addition to that, we computed scores of 7 standard metrics (BLEU, SentBLEU, NIST, WER, PER, TER and CDER) as baselines. The...
متن کاملThe AFRL WMT17 Neural Machine Translation Training Task Submission
The WMT17 Neural Machine Translation Training Task aims to test various methods of training neural machine translation systems. We describe the AFRL submission, including preprocessing and its knowledge distillation framework. Teacher systems are given factors for domain, case, and subword location. Student systems are given multiple teachers’ output and a subselected set of the training data d...
متن کاملBlend: a Novel Combined MT Metric Based on Direct Assessment - CASICT-DCU submission to WMT17 Metrics Task
Existing metrics to evaluate the quality of Machine Translation hypotheses take different perspectives into account. DPMFcomb, a metric combining the merits of a range of metrics, achieved the best performance for evaluation of to-English language pairs in the previous two years of WMT Metrics Shared Tasks. This year, we submit a novel combined metric, Blend, to WMT17 Metrics task. Compared to ...
متن کاملCUNI submission in WMT17: Chimera goes neural
This paper describes the neural and phrase-based machine translation systems submitted by CUNI to English-Czech News Translation Task of WMT17. We experiment with synthetic data for training and try several system combination techniques, both neural and phrase-based. Our primary submission CU-CHIMERA ends up being phrase-based backbone which incorporates neural and deep-syntactic candidate tran...
متن کامل