Identifying charge and mass transfer resistances of an oxygen reducing biocathode

نویسندگان

  • Annemiek Ter Heijne
  • Olivier Schaetzle
  • Sixto Gimenez
  • Francisco Fabregat-Santiago
  • Juan Bisquert
  • David P. B. T. B Strik
  • Frédéric Barrière
  • Cees J. N Buisman
  • Hubertus V. M. Hamelers
  • David P. B. T. B. Strik
  • Cees J. N. Buisman
چکیده

In this study, we identified mass and charge transfer resistances for an oxygen reducing biocathode in a microbial fuel cell (MFC) by electrochemical impedance spectroscopy (EIS). The oxygen reducing biocathode was grown using nitrifying sludge as the inoculum. A standard model for charge transfer at the electrode surface combined with diffusion across a boundary layer was used. EIS measurements were performed under variation of both linear flow velocities and cathode potentials. Fitting the impedance data to the standard model at constant potential and different flow rates confirmed that increasing flow rate had no effect on charge transfer resistance, but led to a decrease in mass transfer resistance. From the variation in cathode potential at constant flow rate, a minimum in charge transfer resistance was found at 0.28 V vs. Ag/AgCl. The minimum in charge transfer resistance could be explained by the combined biochemical and electrochemical kinetics typical for bioelectrochemical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement of Mass Transfer Coefficients of Natural Gas Mixture during Gas Hydrate Formation

In this study, mass transfer coefficients (MTC’s) of natural gas components during hydrate formation are reported. This work is based on the assumption that the transport of gas molecules from gas phase to aqueous phase is dominant among other resistances. Several experiments were conducted on a mixture of natural gas at different pressures and temperatures and the consumed gas was monitored an...

متن کامل

A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode.

Biocathode extracellular electron transfer (EET) may be exploited for biotechnology applications, including microbially mediated O2 reduction in microbial fuel cells and microbial electrosynthesis. However, biocathode mechanistic studies needed to improve or engineer functionality have been limited to a few select species that form sparse, homogeneous biofilms characterized by little or no grow...

متن کامل

Amine Based CO2 Absorption in Membrane Contactor Using Polyvinyl Pyrrolidone-modified Polysulfone Flat Sheet Membrane: Experimental Study and Mass Transfer Resistance Analysis

Membrane contactor using amine based absorbents is an efficient technology for CO2 separation from gaseous mixtures. A novel porous polysulfone (PSF) flat membrane was prepared via non-solvent phase inversion method. The PSF membrane was modified by adding polyvinyl pyrrolidone (PVP) to the dope solution. The fabricated membrane was used in the serpentine flow field contactor module for CO2 abs...

متن کامل

Oxygen-reducing biocathodes designed with pure cultures of microbial strains isolated from seawater biofilms

Microbial biofilms that form on metallic surfaces in natural seawater are known to generate efficient oxygen-reducing cathodes. The microbial catalysis of oxygen reduction is a major mechanism of corrosion in marine aerobic environments; it can also be exploited to develop biocathodes for microbial fuel cells. In the latter case, seawater biocathodes have the great advantage of operating in hig...

متن کامل

An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy.

An upflow microbial fuel cell (UMFC) system with a U-shaped cathode inside the anode chamber was developed and produced a maximum volumetric power of 29.2 W/m3 at a volumetric loading rate of 3.40 kg COD/(m3 day) and an operating temperature of 35 degrees C while feeding sucrose continuously. The Coulombic efficiency decreased from 51.0% to 10.6% with the increase in the volumetric loading rate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011