Cluster Identification in Nearest-Neighbor Graphs

نویسندگان

  • Markus Maier
  • Matthias Hein
  • Ulrike von Luxburg
چکیده

Assume we are given a sample of points from some underlying distribution which contains several distinct clusters. Our goal is to construct a neighborhood graph on the sample points such that clusters are “identified”: that is, the subgraph induced by points from the same cluster is connected, while subgraphs corresponding to different clusters are not connected to each other. We derive bounds on the probability that cluster identification is successful, and use them to predict “optimal” values of k for the mutual and symmetric k-nearest-neighbor graphs. We point out different properties of the mutual and symmetric nearest-neighbor graphs related to the cluster identification problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal construction of k-nearest-neighbor graphs for identifying noisy clusters

We study clustering algorithms based on neighborhood graphs on a random sample of data points. The question we ask is how such a graph should be constructed in order to obtain optimal clustering results. Which type of neighborhood graph should one choose, mutual k-nearest neighbor or symmetric k-nearest neighbor? What is the optimal parameter k? In our setting, clusters are defined as connected...

متن کامل

Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor

Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems.  In this study, we d...

متن کامل

Implementing a Parallel Dynamic Approximate Nearest Neighbor Search Algorithm∗

We describe the implementation of a fast, dynamic, approximate, nearest-neighbor search algorithm that works well in fixed dimensions (d ≤ 5), based on sorting points coordinates in Morton (or z-) ordering. Our code scales well on multi-core/cpu shared memory systems. Our implementation is competitive with the best approximate nearest neighbor searching codes available on the web, especially fo...

متن کامل

On Nearest-Neighbor Graphs

The “nearest neighbor” relation, or more generally the “k nearest neighbors” relation, defined for a set of points in a metric space, has found many uses in computational geometry and clustering analysis, yet surprisingly little is known about some of its basic properties. In this paper, we consider some natural questions that are motivated by geometric embedding problems. We derive bounds on t...

متن کامل

Radar target identification using various nearest neighbor techniques

Radar target identification using decision-theoretic distance based methods have long been used for classifying unknown non-cooperative radar targets using their Radar Cross Section (RCS). This study revisits this subj ect using the recently developed Large Margin Nearest Neighbor (LMNN) technique in addition to other traditional nearest neighbor methods. Radar target recognition has been defin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007