Pleiotropy-robust Mendelian randomization.
نویسندگان
چکیده
Background The potential of Mendelian randomization studies is rapidly expanding due to: (i) the growing power of genome-wide association study (GWAS) meta-analyses to detect genetic variants associated with several exposures; and (ii) the increasing availability of these genetic variants in large-scale surveys. However, without a proper biological understanding of the pleiotropic working of genetic variants, a fundamental assumption of Mendelian randomization (the exclusion restriction) can always be contested. Methods We build upon and synthesize recent advances in the literature on instrumental variables (IVs) estimation that test and relax the exclusion restriction. Our pleiotropy-robust Mendelian randomization (PRMR) method first estimates the degree of pleiotropy, and in turn corrects for it. If (i) a subsample exists for which the genetic variants do not affect the exposure; (ii) the selection into this subsample is not a joint consequence of the IV and the outcome; (iii) pleiotropic effects are homogeneous, PRMR obtains unbiased estimates of causal effects. Results Simulations show that existing MR methods produce biased estimators for realistic forms of pleiotropy. Under the aforementioned assumptions, PRMR produces unbiased estimators. We illustrate the practical use of PRMR by estimating the causal effect of: (i) tobacco exposure on body mass index (BMI); (ii) prostate cancer on self-reported health; and (iii) educational attainment on BMI in the UK Biobank data. Conclusions PRMR allows for instrumental variables that violate the exclusion restriction due to pleiotropy, and it corrects for pleiotropy in the estimation of the causal effect. If the degree of pleiotropy is unknown, PRMR can still be used as a sensitivity analysis.
منابع مشابه
Misconceptions on the use of MR-Egger regression and the evaluation of the InSIDE assumption
1. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003;32:1–22. 2. Burgess S, Timpson NJ, Ebrahim S, Davey Smith G. Mendelian randomization: where are we now and where are we going? Int J Epidemiol 2015;44:379–88. 3. Glymour MM, Tchetgen EJT, Robins JM. Credible Mendelian randomizat...
متن کاملWidespread pleiotropy confounds causal relationships between complex traits and diseases inferred from Mendelian randomization
A fundamental assumption in inferring causality of an exposure on complex disease using Mendelian randomization (MR) is that the genetic variant used as the instrumental variable cannot have pleiotropic effects. Violation of this ‘no pleiotropy’ assumption can cause severe bias. Emerging evidence have supported a role for pleiotropy amongst disease-associated loci identified from GWA studies. H...
متن کاملExtending the MR‐Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy
Methods have been developed for Mendelian randomization that can obtain consistent causal estimates while relaxing the instrumental variable assumptions. These include multivariable Mendelian randomization, in which a genetic variant may be associated with multiple risk factors so long as any association with the outcome is via the measured risk factors (measured pleiotropy), and the MR-Egger (...
متن کاملAutomating Mendelian randomization through machine learning to construct a putative causal map of the human phenome
A major application for genome-wide association studies (GWAS) has been the emerging field of causal inference using Mendelian randomization (MR), where the causal effect between a pair of traits can be estimated using only summary level data. MR depends on SNPs exhibiting vertical pleiotropy, where the SNP influences an outcome phenotype only through an exposure phenotype. Issues arise when th...
متن کاملMendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
BACKGROUND The number of Mendelian randomization analyses including large numbers of genetic variants is rapidly increasing. This is due to the proliferation of genome-wide association studies, and the desire to obtain more precise estimates of causal effects. However, some genetic variants may not be valid instrumental variables, in particular due to them having more than one proximal phenotyp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of epidemiology
دوره شماره
صفحات -
تاریخ انتشار 2017