Genetic and pharmacological antagonism of NK1 receptor prevents opiate abuse potential

نویسندگان

  • A J Sandweiss
  • M I McIntosh
  • A Moutal
  • R Davidson-Knapp
  • J Hu
  • A K Giri
  • T Yamamoto
  • V J Hruby
  • R Khanna
  • T M Largent-Milnes
  • T W Vanderah
چکیده

Development of an efficacious, non-addicting analgesic has been challenging. Discovery of novel mechanisms underlying addiction may present a solution. Here we target the neurokinin system, which is involved in both pain and addiction. Morphine exerts its rewarding actions, at least in part, by inhibiting GABAergic input onto substance P (SP) neurons in the ventral tegmental area (VTA), subsequently increasing SP release onto dopaminergic neurons. Genome editing of the neurokinin 1 receptor (NK1R) in the VTA renders morphine non-rewarding. Complementing our genetic approach, we demonstrate utility of a bivalent pharmacophore with dual activity as a μ/δ opioid agonist and NK1R antagonist in inhibiting nociception in an animal model of acute pain while lacking any positive reinforcement. These data indicate that dual targeting of the dopaminergic reward circuitry and pain pathways with a multifunctional opioid agonist-NK1R antagonist may be an efficacious strategy in developing future analgesics that lack abuse potential.Molecular Psychiatry advance online publication, 9 May 2017; doi:10.1038/mp.2017.102.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disruption of the CRF/CRF1 Receptor Stress System Exacerbates the Somatic Signs of Opiate Withdrawal

Escape from the extremely stressful opiate withdrawal syndrome may motivate opiate seeking and taking. The corticotropin-releasing factor receptor-1 (CRF1) pathway mediates behavioral and endocrine responses to stress. Here, we report that genetic inactivation (CRF1-/-) as well as pharmacological antagonism of the CRF/CRF1 receptor pathway increased and prolonged the somatic expression of opiat...

متن کامل

NK1-receptor activation prevents hydrocarbon-induced lung injury in mice.

Recent evidence suggests that neurokinin (NK)-receptor activation may have a protective role in maintaining lung integrity when challenged by airborne toxicants such as sulfur dioxide, ozone, acrolein, or hydrocarbons. To investigate the effect of NK1-receptor activation on hydrocarbon-induced lung injury, B6.A.D. (Ahr d/Nats) mice received subchronic exposures to JP-8 jet fuel (JP-8). Lung inj...

متن کامل

Impact of substance P receptor antagonism on the serotonin and norepinephrine systems: relevance to the antidepressant/anxiolytic response.

Substance P (neurokinin-1 [NK1]) receptor antagonists appear to be effective antidepressant and anxiolytic agents, as indicated in 3 double-blind clinical trials. In laboratory animals, they promptly attenuate the responsiveness of serotonin (5-hydroxytryptamine [5-HT]) and norepinephrine (NE) neurons to agonists of their cell-body autoreceptors, as is the case for some antidepressant drugs tha...

متن کامل

Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments.

Opiate and cocaine addictions are major social and medical problems that impose a significant burden on society. Despite the size and scope of these problems, there are few effective treatments for these addictions. Methadone maintenance is an effective and most widely used treatment for opiate addiction, allowing normalization of many physiological abnormalities caused by chronic use of short-...

متن کامل

mu-Opioid receptors often colocalize with the substance P receptor (NK1) in the trigeminal dorsal horn.

Substance P (SP) is a peptide that is present in unmyelinated primary afferents to the dorsal horn and is released in response to painful or noxious stimuli. Opiates active at the mu-opiate receptor (MOR) produce antinociception, in part, through modulation of responses to SP. MOR ligands may either inhibit the release of SP or reduce the excitatory responses of second-order neurons to SP. We e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 375  شماره 

صفحات  -

تاریخ انتشار 2017