Heterogeneous distribution of axonal cytoskeleton proteins in the human optic nerve.
نویسندگان
چکیده
PURPOSE Cytoskeleton proteins play a critical role in maintaining retinal ganglion cell structure, viability, and function. This study documents the distribution of cytoskeleton protein subunits in the various regions of the normal human optic nerve and identifies important relationships among mitochondria, myelin, and neurofilament proteins. METHODS Twenty-three optic nerves from human cadavers were used. Confocal microscopy was used to examine the distribution of neurofilament light, neurofilament medium, neurofilament heavy (phosphorylated and unphosphorylated), neurofilament heavy (phosphorylated only), actin, and microtubule associated protein (MAP)-1 along the sagittal plane of the optic nerve. Comparisons were made among superior, middle, and inferior regions and also among temporal, central, and nasal portions of the optic nerve. Colocalization of neurofilament light, mitochondrial cytochrome c oxidase (COX), and myelin was also performed. RESULTS There are significant differences in the pattern and distribution of neurofilament protein subunits, actin, and MAP-1 along the sagittal plane of the optic nerve. Cytoskeleton proteins and COX mitochondria are found in highest concentrations in the prelaminar and lamina cribrosa regions. COX and neurofilament light occurs predominantly in unmyelinated nerve, with a significant decrease in concentration occurring on optic nerve myelination. CONCLUSIONS The heterogeneous distribution of cytoskeleton proteins along the sagittal plane may be an important functional adaptation that reflects the nonuniform nature of the physiological and structural environment of the optic nerve. The heterogeneous distribution of cytoskeleton proteins may also partly account for the asymmetric pattern of optic nerve damage after intraocular pressure elevation.
منابع مشابه
Axonal transport and cytoskeletal changes in the laminar regions after elevated intraocular pressure.
PURPOSE To investigate the axonal cytoskeleton changes occurring in the prelaminar region, lamina cribrosa, and postlaminar region of the porcine optic nerve after an acute increase in intraocular pressure (IOP) and whether this corresponds with axonal transport abnormalities. METHODS Six white Landrace pigs were used. The left eye IOP was elevated to 40 to 45 mm Hg for 6 hours, and the right...
متن کاملPosttranslational processing of alpha-tubulin during axoplasmic transport in CNS axons
Tubulin proteins in mouse retinal ganglion cell (RGC) neurons were analyzed to determine whether they undergo posttranslational processing during axoplasmic transport. Alpha- and beta-tubulin comprised heterogeneous proteins in the primary optic pathway (optic nerve and optic tract) when examined by two-dimensional (2D) PAGE. In addition, however, alpha-tubulin exhibited regional heterogeneity ...
متن کاملSelective impairment of slow axonal transport after optic nerve injury in adult rats.
To investigate cellular responses of injured mammalian CNS neurons, we examined the slow transport of cytoskeletal proteins in rat retinal ganglion cell (RGC) axons within the ocular stump of optic nerves that were crushed intracranially. RGC proteins were labeled by an intravitreal injection of 35S-methionine, and optic nerves were examined by SDS PAGE at different times after injury. In one g...
متن کاملAxonal transport of neurofilaments: a single population of intermittently moving polymers.
Studies on mouse optic nerve have led to the controversial proposal that only a small proportion of neurofilaments are transported in axons and that the majority are deposited into a persistently stationary and extensively cross-linked cytoskeletal network that remains fixed in place for months without movement. We have used computational modeling to address this issue, taking advantage of the ...
متن کاملRescuing axons from degeneration does not affect retinal ganglion cell death.
After a traumatic injury to the central nervous system, the distal stumps of axons undergo Wallerian degeneration (WD), an event that comprises cytoskeleton and myelin breakdown, astrocytic gliosis, and overexpression of proteins that inhibit axonal regrowth. By contrast, injured neuronal cell bodies show features characteristic of attempts to initiate the regenerative process of elongating the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 50 6 شماره
صفحات -
تاریخ انتشار 2009