Robust spiked random matrices and a robust G-MUSIC estimator

نویسنده

  • Romain Couillet
چکیده

A class of robust estimators of scatter applied to information-plus-impulsive noise samples is studied, where the sample information matrix is assumed of low rank; this generalizes the study (Couillet et al., 2013b) to spiked random matrix models. It is precisely shown that, as opposed to sample covariance matrices which may have asymptotically unbounded (eigen-)spectrum due to the sample impulsiveness, the robust estimator of scatter has bounded spectrum and may contain isolated eigenvalues which we fully characterize. We show that, if found beyond a certain detectability threshold, these eigenvalues allow one to perform statistical inference on the eigenvalues and eigenvectors of the information matrix. We use this result to derive new eigenvalue and eigenvector estimation procedures, which we apply in practice to the popular array processing problem of angle of arrival estimation. This gives birth to an improved algorithm based on the MUSIC method, which we refer to as robust G-MUSIC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Two-Phase Robust Estimation of Process Dispersion Using M-estimator

Parameter estimation is the first step in constructing any control chart. Most estimators of mean and dispersion are sensitive to the presence of outliers. The data may be contaminated by outliers either locally or globally. The exciting robust estimators deal only with global contamination. In this paper a robust estimator for dispersion is proposed to reduce the effect of local contamination ...

متن کامل

Discrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator

This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...

متن کامل

Robust Estimation in Linear Regression Model: the Density Power Divergence Approach

The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...

متن کامل

A robust wavelet based profile monitoring and change point detection using S-estimator and clustering

Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...

متن کامل

Robust M-Estimation for Array Processing: A Random Matrix Approach

This article studies the limiting behavior of a robust M-estimator of population covariance matrices as both the number of available samples and the population size are large. Using tools from random matrix theory, we prove that the difference between the sample covariance matrix and (a scaled version of) the robust M-estimator tends to zero in spectral norm, almost surely. This result is appli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 140  شماره 

صفحات  -

تاریخ انتشار 2015