Asymptotic-preserving Projective Integration Schemes for Kinetic Equations in the Diffusion Limit
نویسندگان
چکیده
We investigate a projective integration scheme for a kinetic equation in the limit of vanishing mean free path, in which the kinetic description approaches a diffusion phenomenon. The scheme first takes a few small steps with a simple, explicit method, such as a spatial centered flux/forward Euler time integration, and subsequently projects the results forward in time over a large time step on the diffusion time scale. We show that, with an appropriate choice of the inner step size, the time-step restriction on the outer time step is similar to the stability condition for the diffusion equation, whereas the required number of inner steps does not depend on the mean free path. We also provide a consistency result. The presented method is asymptotic-preserving, in the sense that the method converges to a standard finite volume scheme for the diffusion equation in the limit of vanishing mean free path. The analysis is illustrated with numerical results, and we present an application to the Su-Olson test.
منابع مشابه
ar X iv : 1 60 3 . 03 17 1 v 1 [ m at h . A P ] 1 0 M ar 2 01 6 WELL - BALANCED AND ASYMPTOTIC PRESERVING SCHEMES FOR KINETIC MODELS
Abstract. In this paper, we propose a general framework for designing numerical schemes that have both well-balanced (WB) and asymptotic preserving (AP) properties, for various kinds of kinetic models. We are interested in two different parameter regimes, 1) When the ratio between the mean free path and the characteristic macroscopic length ε tends to zero, the density can be described by (adve...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملA New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit
We propose a new numerical scheme for linear transport equations. It is based on a decomposition of the distribution function into equilibrium and non-equilibrium parts. We also use a projection technique that allows to reformulate the kinetic equation into a coupled system of an evolution equation for the macroscopic density and a kinetic equation for the non-equilibrium part. By using a suita...
متن کاملAsymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review
Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review Abstract. Kinetic and hyperbolic equations contain small scales (mean free path/time, Debye length, relaxation or reaction time, etc.) that lead to various different asymptotic regimes, in which the classical numerical approximations become prohibitively expensive. Asymptotic-preserving (AP) schemes are...
متن کاملNumerical Schemes for Kinetic Equations in the Anomalous Diffusion Limit. Part I: The Case of Heavy-Tailed Equilibrium
Abstract. In this work, we propose some numerical schemes for linear kinetic equations in the anomalous diffusion limit. When the equilibrium distribution function is a Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a diffusion type equation. However, when a heavy-tailed distribution is considered, another time scale is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 34 شماره
صفحات -
تاریخ انتشار 2012