The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf.

نویسندگان

  • Idit Eshkar-Oren
  • Sergey V Viukov
  • Sharbel Salameh
  • Sharon Krief
  • Chun-do Oh
  • Haruhiko Akiyama
  • Hans-Peter Gerber
  • Napoleone Ferrara
  • Elazar Zelzer
چکیده

Limb development constitutes a central model for the study of tissue and organ patterning; yet, the mechanisms that regulate the patterning of limb vasculature have been left understudied. Vascular patterning in the forming limb is tightly regulated in order to ensure sufficient gas exchange and nutrient supply to the developing organ. Once skeletogenesis is initiated, limb vasculature undergoes two seemingly opposing processes: vessel regression from regions that undergo mesenchymal condensation; and vessel morphogenesis. During the latter, vessels that surround the condensations undergo an extensive rearrangement, forming a stereotypical enriched network that is segregated from the skeleton. In this study, we provide evidence for the centrality of the condensing mesenchyme of the forming skeleton in regulating limb vascular patterning. Both Vegf loss- and gain-of-function experiments in limb bud mesenchyme firmly established VEGF as the signal by which the condensing mesenchyme regulates the vasculature. Normal vasculature observed in limbs where VEGF receptors Flt1, Flk1, Nrp1 and Nrp2 were blocked in limb bud mesenchyme suggested that VEGF, which is secreted by the condensing mesenchyme, regulates limb vasculature via a direct long-range mechanism. Finally, we provide evidence for the involvement of SOX9 in the regulation of Vegf expression in the condensing mesenchyme. This study establishes Vegf expression in the condensing mesenchyme as the mechanism by which the skeleton patterns limb vasculature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intraflagellar transport is essential for endochondral bone formation.

While cilia are present on most cells in the mammalian body, their functional importance has only recently been discovered. Cilia formation requires intraflagellar transport (IFT), and mutations disrupting the IFT process result in loss of cilia and mid-gestation lethality with developmental defects that include polydactyly and abnormal neural tube patterning. The early lethality in IFT mutants...

متن کامل

Dev120279 672..680

Blood vessels serve as key regulators of organogenesis by providing oxygen, nutrients and molecular signals. During limb development, programmed cell death (PCD) contributes to separation of the digits. Interestingly, prior to the onset of PCD, the autopod vasculature undergoes extensive patterning that results in high interdigital vascularity. Here, we show that in mice, the limb vasculature p...

متن کامل

Dev120279 1..9

Blood vessels serve as key regulators of organogenesis by providing oxygen, nutrients and molecular signals. During limb development, programmed cell death (PCD) contributes to separation of the digits. Interestingly, prior to the onset of PCD, the autopod vasculature undergoes extensive patterning that results in high interdigital vascularity. Here, we show that in mice, the limb vasculature p...

متن کامل

Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9

Notch signaling plays a critical role during development by directing the binary cell fate decision between progenitors and differentiated cells. Previous studies have shown sustained Notch activation in cartilage leads to chondrodysplasia. Genetic evidence indicates that Notch regulates limb bud mesenchymal stem cell differentiation into chondrocytes via an Rbpj-dependent Notch pathway. Howeve...

متن کامل

Total Ankylosis of the Upper Left Limb: A Case of Progressive Osseous Heteroplasia

  Progressive osseous heteroplasia is a rare inherited disease that begins with skin ossification and proceeds into the deeper connective tissues. The disease should be distinguished from other genetic disorders of heterotopic ossification including fibrodysplasia ossificans progressiva (FOP) and Albright hereditary osteodystrophy (AHO). We report a case of progressive osseous heteroplasia in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 136 8  شماره 

صفحات  -

تاریخ انتشار 2009