Improving the sweeping efficiency of permanganate into low permeable zones to treat TCE: experimental results and model development.

نویسندگان

  • Chanat Chokejaroenrat
  • Negin Kananizadeh
  • Chainarong Sakulthaew
  • Steve Comfort
  • Yusong Li
چکیده

The residual buildup and treatment of dissolved contaminants in low permeable zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate into LPZs to treat dissolved-phase TCE. This was accomplished by conducting transport experiments that quantified the ability of xanthan-MnO4(-) solutions to penetrate and cover (i.e., sweep) an LPZ that was surrounded by transmissive sands. By incorporating the non-Newtonian fluid xanthan with MnO4(-), penetration of MnO4(-) into the LPZ improved dramatically and sweeping efficiency reached 100% in fewer pore volumes. To quantify how xanthan improved TCE removal, we spiked the LPZ and surrounding sands with (14)C-lableled TCE and used a multistep flooding procedure that quantified the mass of (14)C-TCE oxidized and bypassed during treatment. Results showed that TCE mass removal was 1.4 times greater in experiments where xanthan was employed. Combining xanthan with MnO4(-) also reduced the mass of TCE in the LPZ that was potentially available for rebound. By coupling a multiple species reactive transport model with the Brinkman equation for non-Newtonian flow, the simulated amount of (14)C-TCE oxidized during transport matched experimental results. These observations support the use of xanthan as a means of enhancing MnO4(-) delivery into LPZs for the treatment of dissolved-phase TCE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.

Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO4(-)) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various p...

متن کامل

Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill.

Past disposal of industrial solvents into unregulated landfills is a significant source of groundwater contamination. In 2009, we began investigating a former unregulated landfill with known trichloroethene (TCE) contamination. Our objective was to pinpoint the location of the plume and treat the TCE using in situ chemical oxidation (ISCO). We accomplished this by using electrical resistivity i...

متن کامل

Oxidation of Nonaqueous Phase Trichloroethylene with Permanganate in Epikarst

In situ chemical oxidation (ISCO) is one of the effective technologies used for source zone remediation of dense nonaqueous phase liquids (DNAPLs) such as chlorinated solvents in the subsurface environments. In karst systems, DNAPL source zones reside in epikarst where the contaminant is generally trapped in the soil or at the carbonate bedrock contact. The efficiency of oxidation of residual t...

متن کامل

A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second-generation improvements.

In 2009, we identified a TCE plume at an abandoned landfill that was located in a low permeable silty-clay aquifer. To treat the TCE, we manufactured slow-release potassium permanganate cylinders (oxidant candles) that had diameters of either 5.1 or 7.6 cm and were 91.4 cm long. In 2010, we compared two methods of candle installation by inserting equal masses of the oxidant candles (7.6-cm vs 5...

متن کامل

The DNAPL Remediation Challenge: Is There a Case for Source Depletion?

Permanganate remediation was conducted in southern Florida at a small industrial site with TCE and 1,1,1-TCAcontamination down to 70 ft bgs in a sand aquifer. The permanganate solution was injected into the DNAPL source zone(30 ft diameter in plan view) where a small mass of residual TCE DNAPL caused this zone to have TCE concentrationsexceeding 10,000 μg/L, with small zones approac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 47 22  شماره 

صفحات  -

تاریخ انتشار 2013