Monte Carlo Methods for Bayesian Analysis of Survival Data Using Mixtures of Dirichlet Process Priors
نویسندگان
چکیده
Consider the model in which the data consist of possibly censored lifetimes, and one puts a mixture of Dirichlet process priors on the common survival distribution. The exact computation of the posterior distribution of the survival function is in general impossible to obtain. This paper develops and compares the performance of several simulation techniques, based on Markov chain Monte Carlo and sequential importance sampling, for approximating this posterior distribution. One scheme, whose derivation is based on sequential importance sampling, gives an exactly iid sample from the posterior for the case of right censored data. A second contribution of this paper is a battery of programs that implement the various schemes discussed in this paper. The programs and methods are illustrated on a data set of interval-censored times arising from two treatments for breast cancer.
منابع مشابه
Semiparametric Bayesian measurement error modeling
This work introduces a Bayesian semi-parametric approach for dealing with regression models where the covariate is measured with error. The main advantage of this extended Bayesian approach is the possibility of considering generalizations of the elliptical family of models by using Dirichlet process priors in the dependent and independent situations. Conditional posterior distributions are imp...
متن کاملBayesian semiparametric modeling and inference with mixtures of symmetric distributions
We propose a semiparametric modeling approach for mixtures of symmetric distributions. The mixture model is built from a common symmetric density with different components arising through different location parameters. This structure ensures identifiability for mixture components, which is a key feature of the model as it allows applications to settings where primary interest is inference for t...
متن کاملAn asymptotic analysis of Gibbs-type priors
The Dirichlet process, introduced by T. Ferguson in 1973, is the most famous and successful example of discrete nonparametric prior in Bayesian statistics. Among many desirable features, such process is posterior consistent, that is the posterior distribution accumulates, as the sample size grows to infinity, to a mass point at the “true” distribution, say P0, that has generated the data, whate...
متن کاملDensity Modeling and Clustering Using Dirichlet Diffusion Trees
I introduce a family of prior distributions over multivariate distributions, based on the use of a “Dirichlet diffusion tree” to generate exchangeable data sets. These priors can be viewed as generalizations of Dirichlet processes and of Dirichlet process mixtures, but unlike simple mixtures, they can capture the hierarchical structure present in many distributions, by means of the latent diffu...
متن کاملGeneralized Species Sampling Priors with Latent Beta reinforcements
Many popular Bayesian nonparametric priors can be characterized in terms of exchangeable species sampling sequences. However, in some applications, exchangeability may not be appropriate. We introduce a novel and probabilistically coherent family of non-exchangeable species sampling sequences characterized by a tractable predictive probability function with weights driven by a sequence of indep...
متن کامل