Differential mechanisms of nitric oxide- and peroxynitrite-induced cell death.

نویسندگان

  • Johanna T A Meij
  • Carole L Haselton
  • Kristin L Hillman
  • Dhanasekaran Muralikrishnan
  • Manuchair Ebadi
  • Lei Yu
چکیده

Nitric oxide (NO) contributes to cellular degeneration in various disorders, particularly in the nervous system. NO targets cell proteins such as soluble guanylyl cyclase, but its detrimental effects are generally attributed to its reaction product with superoxide, peroxynitrite. To understand the mechanisms of NO-induced cell stress, we studied the effects of the NO donors diethylenetriamine and spermine NONOate and the peroxynitrite donor 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride (SIN-1) in SH-SY5Y and NG108-15 neuroblastoma cells. All three compounds induced a dose- and time-dependent decrease in viable cells, which was not blocked by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. The two NONOates were approximately 15-fold more potent in SH-SY5Y than in NG108-15 cells, whereas the EC50 values of SIN-1 in SH-SY5Y and NG108-15 cells were in the same order. This led us to conclude that the mechanisms of NO and peroxynitrite did not converge. This was supported by our other findings. NONOates induced DNA fragmentation and an increase in cellular caspase-3 activity that preceded the gradual decline in cell viability. In contrast, SIN-1 induced a transient decline in ATP levels and a delayed loss of cell viability with no significant increase in caspase-3 activity or DNA laddering. Moreover, post-treatment with insulin inhibited caspase-3 activation and loss of cell viability in NONOate- but not in SIN-1-exposed cells. These findings suggest that NO is a potent toxin independent of peroxynitrite formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric Oxide Induces Cell Death by Regulating Anti-Apoptotic BCL-2 Family Members

Nitric oxide (NO) activates the intrinsic apoptotic pathway to induce cell death. However, the mechanism by which this pathway is activated in cells exposed to NO is not known. Here we report that BAX and BAK are activated by NO and that cytochrome c is released from the mitochondria. Cells deficient in Bax and Bak or Caspase-9 are completely protected from NO-induced cell death. The individual...

متن کامل

Peroxynitrite and drug-dependent toxicity.

Peroxynitrite is the product of the diffusion-controlled termination reaction between two radicals, nitric oxide and superoxide and is a strong oxidant and nitrating intermediate. Critical biomolecules like proteins, lipids and DNA react with peroxynitrite via direct or radical-mediated mechanisms, resulting in alterations in enzyme activities and signaling pathways. The biological consequences...

متن کامل

Etoposide Reduces Peroxynitrite-Induced Cytotoxicity via Direct Scavenging Effect

Previously, we reported that glucose-deprived astrocytes are more vulnerable to the cytotoxicity of peroxynitrite, the reaction product of nitric oxide and superoxide anion. The augmented vulnerability of glucose-deprived astrocytes to peroxynitrite cytotoxicity was dependent on their proliferation rate. Inhibition of cell cycle progression has been shown to inhibit the apoptotic cell death occ...

متن کامل

Colon epithelial cell death in 2,4,6-trinitrobenzenesulfonic acid-induced colitis is associated with increased inducible nitric-oxide synthase expression and peroxynitrite production.

Peroxynitrite, derived from the reaction of nitric oxide (NO(.)) with superoxide (O(2)), is a potent nitrating and oxidizing agent that can induce apoptosis in a variety of different cell types. In the present study, we investigated the possible role of peroxynitrite as a mediator of colon epithelial cell death in rat colitis. Rat colon inflammation was induced by intracolonic administration of...

متن کامل

Inflammatory neurodegeneration induced by lipoteichoic acid from Staphylococcus aureus is mediated by glia activation, nitrosative and oxidative stress, and caspase activation.

In this study we investigated the mechanisms of neuronal cell death induced by lipoteichoic acid (LTA) and muramyl dipeptide (MDP) from Gram-positive bacterial cell walls using primary cultures of rat cerebellum granule cells (CGCs) and rat cortical glial cells (astrocytes and microglia). LTA (+/- MDP) from Staphylococcus aureus induced a strong inflammatory response of both types of glial cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 66 4  شماره 

صفحات  -

تاریخ انتشار 2004