Hybrid finite volume discretization of linear elasticity models on general meshes

نویسندگان

  • Daniele A. Di Pietro
  • Robert Eymard
  • Simon Lemaire
  • Roland Masson
چکیده

This paper presents a new discretization scheme for linear elasticity models using only one degree of freedom per face corresponding to the normal component of the displacement. The scheme is based on a piecewise constant gradient construction and a discrete variational formulation for the displacement field. The tangential components of the displacement field are eliminated using a second order linear interpolation. Our main motivation is the coupling of geomechanical models and porous media flows arising in reservoir or CO2 storage simulations. Our scheme guarantees by construction the compatibility condition between the displacement discretization and the usual cell centered finite volume discretization of the Darcy flow model. In addition it applies on general meshes possibly non conforming such as Corner Point Geometries commonly used in reservoir and CO2 storage simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow

In this work we introduce a discrete functional space on general polygonal or polyhedral meshes which mimics two important properties of the standard Crouzeix–Raviart space, namely the continuity of mean values at interfaces and the existence of an interpolator which preserves the mean value of the gradient inside each element. The construction borrows ideas from both Cell Centered Galerkin and...

متن کامل

Hybrid Stress Finite Volume Method for Linear Elasticity Problems

Abstract. A hybrid stress finite volume method is proposed for linear elasticity equations. In this new method, a finite volume formulation is used for the equilibrium equation, and a hybrid stress quadrilateral finite element discretization, with continuous piecewise isoparametric bilinear displacement interpolation and two types of stress approximation modes, is used for the constitutive equa...

متن کامل

A Class of Fluid-structure Interaction Solvers with a Nearly Incompressible Elasticity Model

In this paper, we present some numerical studies on two partitioned fluid-structure interaction solvers: a preconditioned GMRES solver and a Newton based solver, for the fluid-structure interaction problems employing a nearly incompressible elasticity model in a classical mixed displacementpressure formulation. Both are highly relying on robust and efficient solvers for the fluid and structure ...

متن کامل

Convergence of a Cell-Centered Finite Volume Discretization for Linear Elasticity

We show convergence of a cell-centered finite volume discretization for linear elasticity. The discretization, termed the MPSA method, was recently proposed in the context of geological applications, where cell-centered variables are often preferred. Our analysis utilizes a hybrid variational formulation, which has previously been used to analyze finite volume discretizations for the scalar dif...

متن کامل

A mixed finite element for weakly-symmetric elasticity

We develop a finite element discretization for the weakly symmetric equations of linear elasticity on tetrahedral meshes. The finite element combines, for r ≥ 0, discontinuous polynomials of r for the displacement, H(div)-conforming polynomials of order r+1 for the stress, and H(curl)-conforming polynomials of order r + 1 for the vector representation of the multiplier. We prove that this tripl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011