Placental growth factor mediates aldosterone-dependent vascular injury in mice.

نویسندگان

  • Iris Z Jaffe
  • Brenna G Newfell
  • Mark Aronovitz
  • Najwa N Mohammad
  • Adam P McGraw
  • Roger E Perreault
  • Peter Carmeliet
  • Afshin Ehsan
  • Michael E Mendelsohn
چکیده

In clinical trials, aldosterone antagonists reduce cardiovascular ischemia and mortality by unknown mechanisms. Aldosterone is a steroid hormone that signals through renal mineralocorticoid receptors (MRs) to regulate blood pressure. MRs are expressed and regulate gene transcription in human vascular cells, suggesting that aldosterone might have direct vascular effects. Using gene expression profiling, we identify the pro-proliferative VEGF family member placental growth factor (PGF) as an aldosterone-regulated vascular MR target gene in mice and humans. Aldosterone-activated vascular MR stimulated Pgf gene transcription and increased PGF protein expression and secretion in the mouse vasculature. In mouse vessels with endothelial damage and human vessels from patients with atherosclerosis, aldosterone enhanced expression of PGF and its receptor, FMS-like tyrosine kinase 1 (Flt1). In atherosclerotic human vessels, MR antagonists inhibited PGF expression. In vivo, aldosterone infusion augmented vascular remodeling in mouse carotids following wire injury, an effect that was lost in Pgf-/- mice. In summary, we have identified PGF as what we believe to be a novel downstream target of vascular MR that mediates aldosterone augmentation of vascular injury. These findings suggest a non-renal mechanism for the vascular protective effects of aldosterone antagonists in humans and support targeting the vascular aldosterone/MR/PGF/Flt1 pathway as a therapeutic strategy for ischemic cardiovascular disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aldosterone promotes vascular remodeling by direct effects on smooth muscle cell mineralocorticoid receptors.

OBJECTIVE Vascular remodeling occurs after endothelial injury, resulting in smooth muscle cell (SMC) proliferation and vascular fibrosis. We previously demonstrated that the blood pressure-regulating hormone aldosterone enhances vascular remodeling in mice at sites of endothelial injury in a placental growth factor-dependent manner. We now test the hypothesis that SMC mineralocorticoid receptor...

متن کامل

Aldosterone Increases Early Atherosclerosis and Promotes Plaque Inflammation Through a Placental Growth Factor‐Dependent Mechanism

BACKGROUND Aldosterone levels correlate with the incidence of myocardial infarction and mortality in cardiovascular patients. Aldosterone promotes atherosclerosis in animal models, but the mechanisms are poorly understood. METHODS AND RESULTS Aldosterone was infused to achieve pathologically relevant levels that did not increase blood pressure in the atherosclerosis-prone apolipoprotein E-kno...

متن کامل

Aldosterone mediates its rapid effects in vascular endothelial cells through GPER activation.

The importance of the rapid vascular effects of aldosterone is increasingly appreciated. Through these rapid pathways, aldosterone has been shown to regulate vascular contractility, cell growth, and apoptosis. In our most recent studies, we demonstrated the effects of aldosterone on cell growth and contractility in vascular smooth muscle cells. We showed that these effects could occur via activ...

متن کامل

Moderate inappropriately high aldosterone/NaCl constellation in mice: cardiovascular effects and the role of cardiovascular epidermal growth factor receptor

Non-physiological activation of the mineralocorticoid receptor (MR), e.g. by aldosterone under conditions of high salt intake, contributes to the pathogenesis of cardiovascular diseases, although beneficial effects of aldosterone also have been described. The epidermal growth factor receptor (EGFR) contributes to cardiovascular alterations and mediates part of the MR effects. Recently, we showe...

متن کامل

Impairment of endothelial progenitor cell function and vascularization capacity by aldosterone in mice and humans

AIMS Hyperaldosteronism is associated with vascular injury and increased cardiovascular events. Bone marrow-derived endothelial progenitor cells (EPCs) play an important role in endothelial repair and vascular homeostasis. We hypothesized that hyperaldosteronism impairs EPC function and vascularization capacity in mice and humans. METHODS AND RESULTS We characterized the effects of aldosteron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 120 11  شماره 

صفحات  -

تاریخ انتشار 2010