Parallel Studies of the Invariant Subspace Decomposition Approach for Banded Symmetric Matrices

نویسندگان

  • Christian H. Bischof
  • Steven Huss-Lederman
  • Xiaobai Sun
  • Anna Tsao
  • Thomas Turnbull
چکیده

We present an overview of the banded Invariant Subspace Decomposition Algorithm for symmetric matrices and describe a parallel implementation of this algorithm. The algorithm described here is a promising variant of the Invariant Subspace Decomposition Algorithm for dense symmetric matrices (SYISDA) that retains the property of using scalable primitives, while requiring signiicantly less overall computation than SYISDA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parallel Implementation of the Invariant Subspace Decomposition Algorithm for Dense Symmetric Matrices

We give an overview of the Invariant Subspace Decomposition Algorithm for dense symmetric matrices (SYISDA) by rst describing the algorithm, followed by a discussion of a parallel implementation of SYISDA on the Intel Delta. Our implementation utilizes an optimized parallel matrix multiplication implementation we have developed. Load balancing in the costly early stages of the algorithm is acco...

متن کامل

On Tridiagonalizing and Diagonalizing Symmetric Matrices with Repeated Eigenvalues

We describe a divide-and-conquer tridiagonalizationapproach for matrices with repeated eigenvalues. Our algorithmhinges on the fact that, under easily constructivelyveriiable conditions,a symmetricmatrix with bandwidth b and k distinct eigenvalues must be block diagonal with diagonal blocks of size at most bk. A slight modiication of the usual orthogonal band-reduction algorithm allows us to re...

متن کامل

Parallel Implementation of the Yau and Lu Method for Eigenvalue Computation

In this paper, parallel extensions of a complete symmetric eigensolver, proposed by Yau and Lu in ' l 993' are pre' sented. First, an overview of this invariant subspace decomposition method for dense symmetric matrices is g iven, fo l lowed by numer ical resul ts . Then' works are exposed in progress on distributed-memory implementation. The algorithm's heavy reliance on matrix-matrix multipli...

متن کامل

Parallel Implementation of a Symmetric Eigensolver Based on the Yau and Lu Method

In this paper, we present preliminary results on a complete eigensolver based on the Yau and Lu method. We rst give an overview of this invariant subspace decomposition method for dense symmetric matrices followed by numerical results and work in progress of a distributed-memory implementation. We expect that the algorithm's heavy reliance on matrix-matrix multiplication, coupled with FFT shoul...

متن کامل

Implementation in ScaLAPACK of Divide-and-Conquer Algorithms for Banded and Tridiagonal Linear Systems

Described here are the design and implementation of a family of algorithms for a variety of classes of narrowly banded linear systems. The classes of matrices include symmetric and positive de nite, nonsymmetric but diagonally dominant, and general nonsymmetric; and, all these types are addressed for both general band and tridiagonal matrices. The family of algorithms captures the general avor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995