Adapting Lyubashevsky's Signature Schemes to the Ring Signature Setting
نویسندگان
چکیده
Basing signature schemes on strong lattice problems has been a long standing open issue. Today, two families of lattice-based signature schemes are known: the ones based on the hash-andsign construction of Gentry et al.; and Lyubashevsky’s schemes, which are based on the Fiat-Shamir framework. In this paper we show for the first time how to adapt the schemes of Lyubashevsky to the ring signature setting. In particular we transform the scheme of ASIACRYPT 2009 into a ring signature scheme that provides strong properties of security under the random oracle model. Anonymity is ensured in the sense that signatures of different users are within negligible statistical distance even under full key exposure. In fact, the scheme satisfies a notion which is stronger than the classical full key exposure setting as even if the keypair of the signing user is adversarially chosen, the statistical distance between signatures of different users remains negligible. Considering unforgeability, the best lattice-based ring signature schemes provide either unforgeability against arbitrary chosen subring attacks or insider corruption in log-sized rings. In this paper we present two variants of our scheme. In the basic one, unforgeability is ensured in those two settings. Increasing signature and key sizes by a factor k (typically 80− 100), we provide a variant in which unforgeability is ensured against insider corruption attacks for arbitrary rings. The technique used is pretty general and can be adapted to other existing schemes.
منابع مشابه
Convertible limited (multi-) verifier signature: new constructions and applications
A convertible limited (multi-) verifier signature (CL(M)VS) provides controlled verifiability and preserves the privacy of the signer. Furthermore, limited verifier(s) can designate the signature to a third party or convert it into a publicly verifiable signature upon necessity. In this proposal, we first present a generic construction of convertible limited verifier signature (CLVS) into which...
متن کاملDouble voter perceptible blind signature based electronic voting protocol
Mu et al. have proposed an electronic voting protocol and claimed that it protects anonymity of voters, detects double voting and authenticates eligible voters. It has been shown that it does not protect voter's privacy and prevent double voting. After that, several schemes have been presented to fulfill these properties. However, many of them suffer from the same weaknesses. In this p...
متن کاملID-based Ring Signature and Proxy Ring Signature Schemes from Bilinear Pairings
In 2001, Rivest et al. firstly introduced the concept of ring signatures. A ring signature is a simplified group signature without any manager. It protects the anonymity of a signer. The first scheme proposed by Rivest et al. was based on RSA cryptosystem and certificate based public key setting. The first ring signature scheme based on DLP was proposed by Abe, Ohkubo, and Suzuki. Their scheme ...
متن کاملSolutions to Key Exposure Problem in Ring Signature
In this paper, we suggest solutions to the key exposure problem in ring signature. In particular, we propose the first forward secure ring signature scheme and the first key-insulated ring signature schemes. Both constructions allow a (t, n)-threshold setting. That is, even t secret keys are compromised, the validity of all forward secure ring signatures generated in the past is still preserved...
متن کاملRing Signature and Identity-Based Ring Signature from Lattice Basis Delegation
In this paper, we propose a set of ring signature (RS) schemes and identity-based ring signature (IBRS) schemes using the lattice basis delegation technique due to [10,22]. The schemes are unforgeable and hold anonymity in the random oracle model. Using the method in [28,29], we also extend our constructions to obtain RS and IBRS schemes in the standard model. Our proposed ring signature scheme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013