Minimum Fill-in and Treewidth for Graphs Modularly Decomposable into Chordal Graphs
نویسنده
چکیده
We show that a minimum ll-in ordering of a graph can be determined in linear time if it can be modularly decomposed into chordal graphs. This generalizes results of 2]. We show that the treewidth of these graphs can be determined in O((n + m) log n) time.
منابع مشابه
Complement of Special Chordal Graphs and Vertex Decomposability
In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.
متن کاملMinimum Fill-In and Treewidth of Split+ ke and Split+ kv Graphs
In this paper we investigate how graph problems that are NP-hard in general, but polynomially solvable on split graphs, behave on input graphs that are close to being split. For this purpose we define split+ke and split+kv graphs to be the graphs that can be made split by removing at most k edges and at most k vertices, respectively. We show that problems like treewidth and minimum fill-in are ...
متن کاملTreewidth for Graphs with Small Chordality
A graph G is k-chordal, if it does not contain chordless cycles of length larger than k. The chordality Ic of a graph G is the minimum k for which G is k-chordal. The degeneracy or the width of a graph is the maximum min-degree of any of its subgraphs. Our results are the following: ( 1) The problem of treewidth remains NP-complete when restricted to graphs with small maximum degree. (2) An upp...
متن کاملConstructing vertex decomposable graphs
Recently, some techniques such as adding whiskers and attaching graphs to vertices of a given graph, have been proposed for constructing a new vertex decomposable graph. In this paper, we present a new method for constructing vertex decomposable graphs. Then we use this construction to generalize the result due to Cook and Nagel.
متن کاملOn Treewidth and Minimum Fill-In of Asteroidal Triple-Free Graphs
We present O(n’R + n3R3) time algorithms to compute the treewidth, pathwidth, minimum fill-in and minimum interval graph completion of asteroidal triple-free graphs, where n is the number of vertices and R is the number of minimal separators of the input graph. This yields polynomial time algorithms for the four NP-complete graph problems on any subclass of the asteroidal triple-free graphs tha...
متن کامل