X-chromosome inactivation in XX androgenetic mouse embryos surviving implantation.
نویسندگان
چکیده
Using genetic and cytogenetic markers, we assessed early development and X-chromosome inactivation (X-inactivation) in XX mouse androgenones produced by pronuclear transfer. Contrary to the current view, XX androgenones are capable of surviving to embryonic day 7.5, achieving basically random X-inactivation in all tissues including those derived from the trophectoderm and primitive endoderm that are characterized by paternal X-activation in fertilized embryos. This finding supports the hypothesis that in fertilized female embryos, the maternal X chromosome remains active until the blastocyst stage because of a rigid imprint that prevents inactivation, whereas the paternal X chromosome is preferentially inactivated in extra-embryonic tissues owing to lack of such imprint. In spite of random X-inactivation in XX androgenones, FISH analyses revealed expression of stable Xist RNA from every X chromosome in XX and XY androgenonetic embryos from the four-cell to morula stage. Although the occurrence of inappropriate X-inactivation was further suggested by the finding that Xist continues ectopic expression in a proportion of cells from XX and XY androgenones at the blastocyst and the early egg cylinder stage, a replication banding study failed to provide positive evidence for inappropriate X-inactivation at E6. 5.
منابع مشابه
Post-implantation development of mouse androgenetic embryos produced by in-vitro fertilization of enucleated oocytes.
We report here on the precise ability of mouse androgenetic embryos produced by in-vitro fertilization of enucleated oocytes to develop to day 9.5 of gestation when cultured with M16 and CZB media. Androgenetic embryos cultured with CZB rather than M16 medium developed to the blastocyst stage in a more significant proportion (56.6% versus 45.0%, P < 0.001). However, after cavitation, the rate o...
متن کاملThe development of XO gynogenetic mouse embryos.
Diploid gynogenetic embryos, which have two sets of maternal and no paternal chromosomes, die at or soon after implantation. Since normal female embryos preferentially inactivate the paternally derived X chromosome in certain extraembryonic membranes, the inviability of diploid gynogenetic embryos might be due to difficulties in achieving an equivalent inactivation of one of their two maternall...
متن کاملX chromosome inactivation is initiated in human preimplantation embryos.
X chromosome inactivation (XCI) is the mammalian mechanism that compensates for the difference in gene dosage between XX females and XY males. Genetic and epigenetic regulatory mechanisms induce transcriptional silencing of one X chromosome in female cells. In mouse embryos, XCI is initiated at the preimplantation stage following early whole-genome activation. It is widely thought that human em...
متن کاملX-chromosome inactivation in monkey embryos and pluripotent stem cells.
Inactivation of one X chromosome in female mammals (XX) compensates for the reduced dosage of X-linked gene expression in males (XY). However, the inner cell mass (ICM) of mouse preimplantation blastocysts and their in vitro counterparts, pluripotent embryonic stem cells (ESCs), initially maintain two active X chromosomes (XaXa). Random X chromosome inactivation (XCI) takes place in the ICM lin...
متن کاملRecent advances in X-chromosome inactivation
X inactivation is the silencing one of the two X chromosomes in XX female mammals. Initiation of this process during early development is controlled by the X-inactivation centre, a complex locus that determines how many, and which, X chromosomes will be inactivated. It also produces the Xist transcript, a remarkable RNA that coats the X chromosome in cis and triggers its silencing. Xist RNA coa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 127 19 شماره
صفحات -
تاریخ انتشار 2000