Long-term serial cultivation of mouse induced pluripotent stem cells in serum-free and feeder-free defined medium.
نویسندگان
چکیده
Mouse embryonic stem (mES) cells and mouse induced pluripotent stem (miPS) cells are commonly maintained on inactivated mouse embryonic fibroblast feeder cells in medium supplemented with fetal bovine serum or proprietary replacements. An undefined medium containing unknown quantities of reagents has limited the development of applications for pluripotent cells because of the relative lack of knowledge regarding cell responses to differentiating growth factors. Therefore we developed a serum-free medium, designated ESF7, in which mES cells can be maintained in an undifferentiated state without feeder cells. The medium was tested for culturing miPS cells. The miPS cells have been maintained in ESF7 medium for more than 3 years with an undifferentiated phenotype manifested by the expression of pluripotency marker genes and alkaline phosphatase, and these cells exhibited largely normal karyotypes. Furthermore, we found that fibroblast growth factor-2 (FGF-2) with heparin induced miPS cell differentiation into neuronal cells, both in an adherent monolayer and in embryoid body suspension culture. Moreover, we found that FGF-2 with bone morphogenetic protein 2 induced miPS cell differentiation into cardiomyocytes in embryoid body suspension culture. Furthermore, we transplanted subcutaneously miPS cells maintained in ESF7 into the dorsal flanks of SCID mice; all of the transplants produced tumors with tissues derived from all three embryonic germ layers. As this simple serum-free adherent monoculture system supports the long-term propagation of pluripotent iPS cells in vitro, it will allow us to elucidate cell responses to growth factors under defined conditions, and it should provide useful information for differentiation protocols for human iPS cells.
منابع مشابه
A New Feeder-Free Technique to Expand Human Embryonic Stem Cells and Induced Pluripotent Stem Cells
The optimal maintenance of human embryonic stem cells (hESC) in vitro is generally observed in the presence of a feeder-layer of mouse embryonic fibroblasts in a serum-containing medium. Various approaches are now available to remove the feeder requirement. Today, the best feeder-free system for the maintenance of hESC and induced pluripotent stem (iPS) cells is based on a serum-replacement med...
متن کاملHuman serum-derived protein removes the need for coating in defined human pluripotent stem cell culture
Reliable, scalable and time-efficient culture methods are required to fully realize the clinical and industrial applications of human pluripotent stem (hPS) cells. Here we present a completely defined, xeno-free medium that supports long-term propagation of hPS cells on uncoated tissue culture plastic. The medium consists of the Essential 8 (E8) formulation supplemented with inter-α-inhibitor (...
متن کاملPreparation of Mouse Embryonic Fibroblast Cells Suitable for Culturing Human Embryonic and Induced Pluripotent Stem Cells
In general, human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs)(1) can be cultured under variable conditions. However, it is not easy to establish an effective system for culturing these cells. Since the culture conditions can influence gene expression that confers pluripotency in hESCs and hiPSCs, the optimization and standardization of the culture method is cr...
متن کاملA Newly Defined and Xeno-Free Culture Medium Supports Every-Other-Day Medium Replacement in the Generation and Long-Term Cultivation of Human Pluripotent Stem Cells
Human pluripotent stem cells (hPSCs) present an unprecedented opportunity to advance human health by offering an alternative and renewable cell resource for cellular therapeutics and regenerative medicine. The present demand for high quality hPSCs for use in both research and clinical studies underscores the need to develop technologies that will simplify the cultivation process and control var...
متن کاملA Defined and Xeno-Free Culture Method Enabling the Establishment of Clinical-Grade Human Embryonic, Induced Pluripotent and Adipose Stem Cells
BACKGROUND The growth of stem cells in in vitro conditions requires optimal balance between signals mediating cell survival, proliferation, and self-renewal. For clinical application of stem cells, the use of completely defined conditions and elimination of all animal-derived materials from the establishment, culture, and differentiation processes is desirable. METHODOLOGY/PRINCIPAL FINDINGS ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The International journal of developmental biology
دوره 57 9-10 شماره
صفحات -
تاریخ انتشار 2013