Intersection cuts for nonlinear integer programming: convexification techniques for structured sets
نویسندگان
چکیده
We study the generalization of split and intersection cuts from Mixed Integer Linear Programming to the realm of Mixed Integer Nonlinear Programming. Constructing such cuts requires calculating the convex hull of the difference of two convex sets with specific geometric structures. We introduce two techniques to give precise characterizations of such convex hulls and use them to construct split and intersection cuts for several classes of sets. In particular, we give simple formulas for split cuts for essentially all convex sets described by a single quadratic inequality and for more general intersection cuts for a wide variety of convex quadratic sets.
منابع مشابه
Strong valid inequalities for orthogonal disjunctions and bilinear covering sets
In this paper, we develop a convexification tool that enables the construction of convex hulls for orthogonal disjunctive sets using convex extensions and disjunctive programming techniques. A distinguishing feature of our technique is that, unlike most applications of disjunctive programming, it does not require the introduction of new variables in the relaxation. We develop and apply a toolbo...
متن کاملTwo dimensional lattice-free cuts and asymmetric disjunctions for mixed-integer polyhedra
In this paper, we study the relationship between 2D lattice-free cuts, the family of cuts obtained by taking two-row relaxations of a mixed-integer program (MIP) and applying intersection cuts based on maximal lattice-free sets in R, and various types of disjunctions. Recently, Li and Richard (2007) studied disjunctive cuts obtained from t-branch split disjunctions of mixed-integer sets (these ...
متن کاملIntersection Cuts for Mixed Integer Conic Quadratic Sets
Balas introduced intersection cuts for mixed integer linear sets. Intersection cuts are given by closed form formulas and form an important class of cuts for solving mixed integer linear programs. In this paper we introduce an extension of intersection cuts to mixed integer conic quadratic sets. We identify the formula for the conic quadratic intersection cut by formulating a system of polynomi...
متن کاملInequalities for Mixed Integer Linear Programs
This tutorial presents a theory of valid inequalities for mixed integer linear sets. It introduces the necessary tools from polyhedral theory and gives a geometric understanding of several classical families of valid inequalities such as lift-and-project cuts, Gomory mixed integer cuts, mixed integer rounding cuts, split cuts and intersection cuts, and it reveals the relationships between these...
متن کاملValid inequalities for mixed integer linear programs
This tutorial presents a theory of valid inequalities for mixed integer linear sets. It introduces the necessary tools from polyhedral theory and gives a geometric understanding of several classical families of valid inequalities such as lift-and-project cuts, Gomory mixed integer cuts, mixed integer rounding cuts, split cuts and intersection cuts, and it reveals the relationships between these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 155 شماره
صفحات -
تاریخ انتشار 2016