Stability of faults with heterogeneous friction properties and effective normal stress

نویسندگان

  • Yingdi Luo
  • Jean-Paul Ampuero
چکیده

Abundant geological, seismological and experimental evidence of the heterogeneous structure of natural faults motivates the theoretical and computational study of the mechanical behavior of heterogeneous frictional interfaces. Fault zones are composed of a mixture of materials with contrasting strength, which may affect the spatial variability of seismic coupling, the location of high-frequency radiation and the diversity of slip behavior observed in natural faults. To develop a quantitative understanding of the effect of strength heterogeneity on the mechanical behavior of faults, here we investigate a fault model with spatially variable frictional properties and pore pressure. Conceptually, this model may correspond to two rough surfaces in contact along discrete asperities, the space in between being filled by compressed gouge. The asperities have different permeability than the gouge matrix and may be hydraulically sealed, resulting in different pore pressure. We consider faults governed by rate-and-state friction, with mixtures of velocity-weakening and velocity-strengthening materials and contrasts of effective normal stress. We systematically study the diversity of slip behaviors generated by this model through multi-cycle simulations and linear stability analysis. The fault can be either stable without spontaneous slip transients, or unstable with spontaneous rupture. When the fault is unstable, slip can rupture either part or the entire fault. In some cases the fault alternates between these behaviors throughout multiple cycles. We determine how the fault behavior is controlled by the proportion of velocity-weakening and velocity-strengthening materials, their relative strength and other frictional properties. We also develop, through heuristic approximations, closed-form equations to predict the stability of slip on heterogeneous faults. Our study shows that a fault model with heterogeneous materials and pore pressure contrasts is a viable framework to reproduce the full spectrum of fault behaviors observed in natural faults: from fast earthquakes, to slow transients, to stable sliding. In particular, this model constitutes a building block formodels of episodic tremor and slow slip events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial heterogeneity of tectonic stress and friction in the crust

[1] The complex geometry of faults, seismicity, and diversity of earthquake mechanisms suggest that the stress and strength in Earth’s crust are spatially heterogeneous. We investigated the degree of heterogeneity using the following two end-member models. In one end-member model, we assumed that the orientation of stress is uniform in the crust as is assumed in many stress inversion studies. I...

متن کامل

Earthquake slip between dissimilar poroelastic materials

[1] A mismatch of elastic properties across a fault induces normal stress changes during spatially nonuniform in-plane slip. Recently, Rudnicki and Rice showed that similar effects follow from a mismatch of poroelastic properties (e.g., permeability) within fluid-saturated fringes of damaged material along the fault walls; in this case, it is pore pressure on the slip plane and hence effective ...

متن کامل

Conditions governing the occurrence of supershear ruptures under slip-weakening friction

[1] A general theory for transitions between sub-Rayleigh and intersonic rupture speeds is developed for faults governed by slip-weakening friction. The transition occurs when stresses moving at intersonic speeds ahead of expanding or accelerating sub-Rayleigh ruptures exceed the peak strength of the fault, initiating slip within a daughter crack. Upon reaching a critical nucleation length, the...

متن کامل

Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels

[1] We model ruptures on faults that weaken in response to flash heating of microscopic asperity contacts (within a rate-and-state framework) and thermal pressurization of pore fluid. These are arguably the primary weakening mechanisms on mature faults at coseismic slip rates, at least prior to large slip accumulation. Ruptures on strongly rate-weakening faults take the form of slip pulses or c...

متن کامل

Evaluation of Effective Parameters on the Underground Tunnel Stability Using BEM

There are various parameters that affect stability and expansion of failure zones in under pressure tunnels. Among the important parameters that affect failure zones around the tunnels are cohesion and internal friction angle of the rock mass. In addition, the cross sectional shape is the considerable point in failure distribution around the tunnels. The stress analysis method is one of the app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017