Comparative thermal denaturation of Thermus aquaticus and Escherichia coli type 1 DNA polymerases.

نویسندگان

  • Irene Karantzeni
  • Carmen Ruiz
  • Chin-Chi Liu
  • Vince J Licata
چکیده

Thermal denaturations of the type 1 DNA polymerases from Thermus aquaticus (Taq polymerase) and Escherichia coli (Pol 1) have been examined using differential scanning calorimetry and CD spectroscopy. The full-length proteins are single-polypeptide chains comprising a polymerase domain, a proofreading domain (inactive in Taq) and a 5' nuclease domain. Removal of the 5' nuclease domains produces the 'large fragment' domains of Pol 1 and Taq, termed Klenow and Klentaq respectively. Although the high temperature stability of Taq polymerase is well known, its thermal denaturation has never been directly examined previously. Thermal denaturations of both species of polymerase are irreversible, precluding rigorous thermodynamic analysis. However, the comparative melting behaviour of the polymerases yields information regarding domain structure, domain interactions and also the similarities and differences in the stabilizing forces for the two species of polymerase. In differential scanning calorimetry, Klenow and Klentaq denature as single peaks, with a melting temperature T(m) of 37 and 100 degrees C respectively at pH 9.5. Both full-length polymerases are found to be comprised of two thermodynamic unfolding domains with the 5' nuclease domains of each melting separately. The 5' nuclease domain of Taq denatures as a separate peak, 10 degrees C before the Klentaq domain. Melting of the 5' nuclease domain of Pol 1 overlaps with the Klenow fragment. Presence of the 5' nuclease domain stabilizes the large fragment in Pol 1, but destabilizes it in Taq. Both Klentaq and Klenow denaturations have a very similar dependence on pH and methanol, indicating similarities in the hydrophobic forces and protonation effects stabilizing the proteins. Melting monitored by CD yields slightly lower T(m) values, but almost identical van't Hoff enthalpy Delta H values, consistent with two-state unfolding followed by an irreversible kinetic step. Analysis of the denaturation scan rate dependences with Arrhenius formalism estimates a kinetic barrier to irreversible denaturation for Klentaq that is significantly higher than that for Klenow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salt dependence of DNA binding by Thermus aquaticus and Escherichia coli DNA polymerases.

DNA binding properties of the Type 1 DNA polymerases from Thermus aquaticus (Taq, Klentaq) and Escherichia coli (Klenow) have been examined as a function of [KCl] and [MgCl(2)]. Full-length Taq and its Klentaq "large fragment" behave similarly in all assays. The two different species of polymerases bind DNA with sub-micromolar affinities in very different salt concentration ranges. Consequently...

متن کامل

RNA polymerase-promoter interactions determining different stability of the Escherichia coli and Thermus aquaticus transcription initiation complexes

Transcription initiation complexes formed by bacterial RNA polymerases (RNAPs) exhibit dramatic species-specific differences in stability, leading to different strategies of transcription regulation. The molecular basis for this diversity is unclear. Promoter complexes formed by RNAP from Thermus aquaticus (Taq) are considerably less stable than Escherichia coli RNAP promoter complexes, particu...

متن کامل

Recombinant Thermus aquaticus RNA polymerase, a new tool for structure-based analysis of transcription.

The three-dimensional structure of DNA-dependent RNA polymerase (RNAP) from thermophilic Thermus aquaticus has recently been determined at 3.3 A resolution. Currently, very little is known about T. aquaticus transcription and no genetic system to study T. aquaticus RNAP genes is available. To overcome these limitations, we cloned and overexpressed T. aquaticus RNAP genes in Escherichia coli. Ov...

متن کامل

Low fidelity mutants in the O-helix of Thermus aquaticus DNA polymerase I.

We screened 67 mutants in the O-helix of Thermus aquaticus (Taq) DNA polymerase I (pol I) for altered fidelity of DNA synthesis. These mutants were obtained (Suzuki, M., Baskin, D., Hood, L., and Loeb, L. A. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 9670-9675) by substituting an oligonucleotide containing random sequences for codons 659-671, and selecting for complementation of a growth defect...

متن کامل

Heterogeneity of primer extension products in asymmetric PCR is due both to cleavage by a structure-specific exo/endonuclease activity of DNA polymerases and to premature stops.

In PCR, DNA polymerases from thermophilic bacteria catalyze the extension of primers annealed to templates as well as the structure-specific cleavage of the products of primer extension. Here we show that cleavage by Thermus aquaticus and Thermus thermophilus DNA polymerases can be precise and substantial: it occurs at the base of the stem-loop structure assumed by the single strand products of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 374 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2003