The extremal volume ellipsoids of convex bodies, their symmetry properties, and their determination in some special cases

نویسندگان

  • Osman Güler
  • Filiz Gürtuna
چکیده

A convex body K in R has associated with it a unique circumscribed ellipsoid CE(K) with minimum volume, and a unique inscribed ellipsoid IE(K) with maximum volume. We first give a unified, modern exposition of the basic theory of these extremal ellipsoids using the semi–infinite programming approach pioneered by Fritz John in his seminal 1948 paper. We then investigate the automorphism groups of convex bodies and their extremal ellipsoids. We show that if the automorphism group of a convex body K is large enough, then it is possible to determine the extremal ellipsoids CE(K) and IE(K) exactly, using either semi–infinite programming or nonlinear programming. As examples, we compute the extremal ellipsoids when the convex body K is the part of a given ellipsoid between two parallel hyperplanes, and when K is a truncated second order cone or an ellipsoidal cylinder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry of convex sets and its applications to the extremal ellipsoids of convex bodies

A convex body K in R has around it a unique circumscribed ellipsoid CE(K) with minimum volume, and within it a unique inscribed ellipsoid IE(K) with maximum volume. The modern theory of these ellipsoids is pioneered by Fritz John in his seminal 1948 paper. This paper has two, related goals. First, we investigate the symmetry properties of a convex body by studying its (affine) automorphism grou...

متن کامل

New extremal inclusions and their applications to two-phase composites

In this paper, we find a class of special inclusions that have the same property with respect to second order linear partial differential equations as holds for ellipsoids. That is, in the simplest case and in physical terms, constant magnetization of the inclusion implies constant magnetic field on the inclusion. The special inclusions are found as solutions of a simple variational inequality....

متن کامل

Relative volume comparison theorems in Finsler geometry and their applications

We establish some relative volume comparison theorems for extremal volume forms of‎ ‎Finsler manifolds under suitable curvature bounds‎. ‎As their applications‎, ‎we obtain some results on curvature and topology of Finsler manifolds‎. ‎Our results remove the usual assumption on S-curvature that is needed in the literature‎.

متن کامل

ON THE POWER FUNCTION OF THE LRT AGAINST ONE-SIDED AND TWO-SIDED ALTERNATIVES IN BIVARIATE NORMAL DISTRIBUTION

This paper addresses the problem of testing simple hypotheses about the mean of a bivariate normal distribution with identity covariance matrix against restricted alternatives. The LRTs and their power functions for such types of hypotheses are derived. Furthermore, through some elementary calculus, it is shown that the power function of the LRT satisfies certain monotonicity and symmetry p...

متن کامل

Ellipsoids of Maximal Volume in Convex Bodies

The largest discs contained in a regular tetrahedron lie in its faces. The proof is closely related to the theorem of Fritz John characterising ellipsoids of maximal volume contained in convex bodies. §0. Introduction.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007