Weighted norm estimates and Lp-spectral independence of linear operators
نویسندگان
چکیده
We investigate the Lp-spectrum of linear operators defined consistently on Lp(Ω) for p0 ≤ p ≤ p1, where (Ω, μ) is an arbitrary σ-finite measure space and 1 ≤ p0 < p1 ≤ ∞. We prove p-independence of the Lp-spectrum assuming weighted norm estimates. The assumptions are formulated in terms of a measurable semi-metric d on (Ω, μ); the balls with respect to this semi-metric are required to satisfy a subexponential volume growth condition. We show how previous results on Lp-spectral independence can be treated as special cases of our results and give examples — including strictly elliptic operators in Euclidean space and generators of semigroups that satisfy (generalized) Gaussian bounds — to indicate improvements. AMS subject classification: 45P05, 35P05, 47A10, 47D03. keywords: Lp-spectrum, weighted norm estimates, integral operators, resolvent, elliptic operators, heat kernel estimates. ∗supported by Deutsche Forschungsgemeinschaft
منابع مشابه
Essential norm estimates of generalized weighted composition operators into weighted type spaces
Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...
متن کاملEstimates of Norm and Essential norm of Differences of Differentiation Composition Operators on Weighted Bloch Spaces
Norm and essential norm of differences of differentiation composition operators between Bloch spaces have been estimated in this paper. As a result, we find characterizations for boundedness and compactness of these operators.
متن کاملEssential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملWeighted Estimates for Bilinear Fractional Integral Operators and Their Commutators
In this paper we will prove several weighted estimates for bilinear fractional integral operators and their commutators with BMO functions. We also prove maximal function control theorem for these operators, that is, we prove the weighted Lp norm is bounded by the weighted Lp norm of a natural maximal operator when the weight belongs to A∞. As a corollary we are able to obtain new weighted esti...
متن کامل