Decoupling of nutrient element cycles in soil and plants across an altitude gradient
نویسندگان
چکیده
Previous studies have examined the decoupling of C, N, and P under rapid changes in climate. While this may occur in different environment types, such climactic changes have been reported over short distances in mountainous terrain. We hypothesized that the decoupling of C, N, and P could also occur in response to increases in altitude. We sampled soil and plants from Mount Gongga, Sichuan Province, China. Soil C and N were not related to altitude, whereas soil P increased with altitude. Soil N did not change with mean annual temperature (MAT), mean annual precipitation (MAP), vegetation and soil types, whereas soil P varied with MAT and vegetation type. Plant C remained constant with increasing altitude; plant N exhibited a quadratic change trend along the altitude gradient, with a turning point at 2350 m above average sea level; and plant P decreased with altitude. MAP mostly accounted for the variation in plant P. MAT was responsible for the variation of plant N at elevations below 2350 m, whereas MAT and vegetation type were the dominant influential factors of plants growing above 2350 m. Thus, the decoupling of C, N, and P in both soil and plants was significantly affected by altitude.
منابع مشابه
A Model for Optimal Mycorrhizal Colonization along Altitudinal Gradients
Mycorrhizal associations are generally favourable for vascular plants in nutrient-poor conditions. Still, non-mycorrhizal plants are common in high arctic and alpine areas, which are often poor in nitrogen and phosphorus. The relative proportion of mycorrhizal plants has been found to decrease along with increasing altitude, suggesting that the advantage of the mycorrhizal symbiosis may change ...
متن کاملSoil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland
Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nu...
متن کاملThe distribution of soil nutrients with depth: Global patterns and the imprint of plants
To understand the importance of plants in structuring the vertical distributions of soil nutrients, we explored nutrient distributions in the top meter of soil for more than 10,000 profiles across a range of ecological conditions. Hypothesizing that vertical nutrient distributions are dominated by plant cycling relative to leaching, weathering dissolution, and atmospheric deposition, we examine...
متن کاملAltitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China
Altitude is a determining factor of ecosystem properties and processes in mountains. This study investigated the changes in the concentrations of carbon (C), nitrogen (N), and phosphorus (P) and their ratios in four key ecosystem components (forest floor litter, fine roots, soil, and soil microorganisms) along an altitudinal gradient (from 50 m to 950 m a.s.l.) in subtropical China. The results...
متن کاملFoliar nutrient resorption patterns of four functional plants along a precipitation gradient on the Tibetan Changtang Plateau
Nutrient resorption from senesced leaves as a nutrient conservation strategy is important for plants to adapt to nutrient deficiency, particularly in alpine and arid environment. However, the leaf nutrient resorption patterns of different functional plants across environmental gradient remain unclear. In this study, we conducted a transect survey of 12 communities to address foliar nitrogen (N)...
متن کامل