Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS ᅫᄐCOS-II platform ¬リニ
نویسندگان
چکیده
To develop an advanced battery estimation unit for electric vehicles application, the state-of-charge (SoC) estimation is proposed with an unscented Kalman filter (UKF) and realized with the RTOS lCOS-II platform. Kalman filters are broadly used to deploy various battery SoC estimators recently. Herein, an UKF algorithm has been employed to develop a systematic adaptive SoC estimation framework. Compared with traditional used extended Kalman filter, it uses an unscented transform to deal with the state estimation problem, thus it has the potential to achieve third order accuracy of the Taylor expansion for tracking posterior estimate of the inner inhabited state. Beneficial from it, the SoC estimation accuracy has been improved with higher tracking accuracy and faster convergence ability. To further evaluate and verify the performance of the proposed online SoC estimation approach, a battery-in-loop platform is built and the SoC estimation is calculatedwith a RTOS lCOS-II platform. The analog acquisition, communication system and SoC estimation algorithms were programmed, the performance of the proposed SoC estimation with UKF algorithm was finally investigated. The battery management system with UKF algorithm and RTOS lCOS-II platform has good performance and it can apply for electric vehicles. 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Rotated Unscented Kalman Filter for Two State Nonlinear Systems
In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...
متن کاملEstimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study
One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...
متن کاملReal Time Calibration of Strap-down Three-Axis-Magnetometer for Attitude Estimation
Three-axis-magnetometers (TAMs) are widely utilized as a key component of attitude determination subsystems and as such are considered the corner stone of navigation for low Earth orbiting (LEO) space systems. Precise geomagnetic-based navigation demands accurate calibration of the magnetometers. In this regard, a complete online calibration process of TAM is developed in the current research t...
متن کاملAn Adaptive Square Root Unscented Kalman Filter Approach for State of Charge Estimation of Lithium-Ion Batteries
An accurate state of charge (SOC) estimation is of great importance for the battery management systems of electric vehicles. To improve the accuracy and robustness of SOC estimation, lithium-ion battery SOC is estimated using an adaptive square root unscented Kalman filter (ASRUKF) method. The square roots of the variance matrices of the SOC and noise can be calculated directly by the ASRUKF al...
متن کاملDiagnosis Method for Li-Ion Battery Fault Based on an Adaptive Unscented Kalman Filter
The reliability of battery fault diagnosis depends on an accurate estimation of the state of charge and battery characterizing parameters. This paper presents a fault diagnosis method based on an adaptive unscented Kalman filter to diagnose the parameter bias faults for a Li-ion battery in real time. The first-order equivalent circuit model and relationship between the open circuit voltage and ...
متن کامل