Presentation of telomerase reverse transcriptase, a self-tumor antigen, is down-regulated by histone deacetylase inhibition.
نویسندگان
چکیده
Histone deacetylases (HDAC) modify the architecture of chromatin, leading to decreased gene expression, an effect that is reversed by HDAC inhibition. The balance between deacetylation and acetylation is central to many biological events including the regulation of cell proliferation and cancer but also the differentiation of immune T cells. The effects of HDAC inhibition on the interaction between antitumor effector T cells and tumor cells are not known. Here, we studied presentation of a universal self-tumor antigen, telomerase reverse transcriptase, in human tumor cells during HDAC inhibition. We found that HDAC inhibition with trichostatin A was associated with a decreased presentation and diminished killing of tumor cells by CTLs. Using gene array analysis, we found that HDAC inhibition resulted in a decrease of genes coding for proteasome catalytic proteins and for tapasin, an endoplasmic reticulum resident protein involved in the MHC class I pathway of endogenous antigen presentation. Our findings indicate that epigenetic changes in tumor cells decrease self-tumor antigen presentation and contribute to reduced recognition and killing of tumor cells by cytotoxic T lymphocytes. This mechanism could contribute to tumor escape from immune surveillance.
منابع مشابه
Histone deacetylase inhibition attenuates cell growth with associated telomerase inhibition in high-grade childhood brain tumor cells.
Aberrant epigenetic regulation of gene expression contributes to tumor initiation and progression. Studies from a plethora of hematologic and solid tumors support the use of histone deacetylase inhibitors (HDACi) as potent anticancer agents. However, the mechanism of HDACi action with respect to the temporal order of induced cellular events is unclear. The present study investigates the antican...
متن کاملApoptosis of U937 human leukemic cells by sodium butyrate is associated with inhibition of telomerase activity.
Sodium butyrate as a histone deacetylase inhibitor is known to exhibit anti-cancer effects via the differentiation and apoptosis of various carcinoma cells. However, the mechanism by which sodium butyrate induces apoptosis and the involvement of telomerase activity during apoptosis is not completely understood. To investigate the underlying pathways, sodium butyrate's potential to induce apopto...
متن کاملEffect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract
Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract Background: Lung cancer is one the leading cause of cancer-related death worldwide, with more than 1.2 million deaths each year. In addition to genetic mutations, epigenetic modif...
متن کاملEpigenetic regulation of the human telomerase reverse transciptase gene: A potential therapeutic target for the treatment of leukemia (Review)
Telomerase activation is a critical step in human carcinogenesis through the maintenance of telomeres. Telomerase activity is primarily regulated by the human telomerase reverse transcriptase gene (hTERT), thus, an improved understanding of the transcriptional control of hTERT may provide potential therapeutic targets for the treatment of leukemia and other forms of cancer. Epigenetic modulatio...
متن کاملLysine-Specific Demethylase 1 (LSD1) Is Required for the Transcriptional Repression of the Telomerase Reverse Transcriptase (hTERT) Gene
BACKGROUND Lysine-specific demethylase 1 (LSD1), catalysing demethylation of mono- and di-methylated histone H3-K4 or K9, exhibits diverse transcriptional activities by mediating chromatin reconfiguration. The telomerase reverse transcriptase (hTERT) gene, encoding an essential component for telomerase activity that is involved in cellular immortalization and transformation, is silent in most n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 68 19 شماره
صفحات -
تاریخ انتشار 2008