Spectral Asymptotics for Perturbed Spherical Schrödinger Operators and Applications to Quantum Scattering
نویسندگان
چکیده
We find the high energy asymptotics for the singular Weyl–Titchmarsh m-functions and the associated spectral measures of perturbed spherical Schrödinger operators (also known as Bessel operators). We apply this result to establish an improved local Borg–Marchenko theorem for Bessel operators as well as uniqueness theorems for the radial quantum scattering problem with nontrivial angular momentum.
منابع مشابه
Inverse uniqueness results for Schrödinger operators using de Branges theory
We utilize the theory of de Branges spaces to show when certain Schrödinger operators with strongly singular potentials are uniquely determined by their associated spectral measure. The results are applied to obtain an inverse uniqueness theorem for perturbed spherical Schrödinger operators.
متن کاملInverse Eigenvalue Problems for Perturbed Spherical Schrödinger Operators
We investigate the eigenvalues of perturbed spherical Schrödinger operators under the assumption that the perturbation q(x) satisfies xq(x) ∈ L1(0, 1). We show that the square roots of eigenvalues are given by the square roots of the unperturbed eigenvalues up to an decaying error depending on the behavior of q(x) near x = 0. Furthermore, we provide sets of spectral data which uniquely determin...
متن کاملSpectral Shift Function for Schrödinger Operators in Constant Magnetic Fields
We consider the three-dimensional Schrödinger operator with constant magnetic field, perturbed by an appropriate short-range electric potential, and investigate various asymptotic properties of the corresponding spectral shift function (SSF). First, we analyse the singularities of the SSF at the Landau levels. Further, we study the strong magnetic field asymptotic behaviour of the SSF; here we ...
متن کاملOne-dimensional Schrödinger Operators with Slowly Decaying Potentials: Spectra and Asymptotics or Baby Fourier Analysis Meets Toy Quantum Mechanics
1. Pre-Introduction 2 2. Introduction and background 2 3. Three (sample) principal results 5 4. A criterion for ac spectrum 6 5. Expansions for generalized eigenfunctions 9 6. WKB approximation 10 7. Transmission and reflection coefficients 11 8. Reduction and expansion 13 9. Maximal operators 14 10. Multilinear operators and maximal variants 18 11. Wave operators and time-dependent scattering ...
متن کاملSpectral Asymptotics for Schrödinger Operators with Periodic Point Interactions
Spectrum of the second-order differential operator with periodic point interactions in L2 R is investigated. Classes of unitary equivalent operators of this type are described. Spectral asymptotics for the whole family of periodic operators are calculated. It is proven that the first several terms in the asymptotics determine the class of equivalent operators uniquely. It is proven that the spe...
متن کامل