ARC: A Self-Tuning, Low Overhead Replacement Cache

نویسندگان

  • Nimrod Megiddo
  • Dharmendra S. Modha
چکیده

We consider the problem of cache management in a demand paging scenario with uniform page sizes. We propose a new cache management policy, namely, Adaptive Replacement Cache (ARC), that has several advantages. In response to evolving and changing access patterns, ARC dynamically, adaptively, and continually balances between the recency and frequency components in an online and selftuning fashion. The policy ARC uses a learning rule to adaptively and continually revise its assumptions about the workload. The policy ARC is empirically universal, that is, it empirically performs as well as a certain fixed replacement policy– even when the latter uses the best workload-specific tuning parameter that was selected in an offline fashion. Consequently, ARC works uniformly well across varied workloads and cache sizes without any need for workload specific a priori knowledge or tuning. Various policies such as LRU-2, 2Q, LRFU, and LIRS require user-defined parameters, and, unfortunately, no single choice works uniformly well across different workloads and cache sizes. The policy ARC is simple-to-implement and, like LRU, has constant complexity per request. In comparison, policies LRU-2 and LRFU both require logarithmic time complexity in the cache size. The policy ARC is scan-resistant: it allows one-time sequential requests to pass through without polluting the cache. On real-life traces drawn from numerous domains, ARC leads to substantial performance gains over LRU for a wide range of cache sizes. For example, for a SPC1 like synthetic benchmark, at 4GB cache, LRU delivers a hit ratio of while ARC achieves a hit ratio of .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CAR: Clock with Adaptive Replacement

CLOCK is a classical cache replacement policy dating back to 1968 that was proposed as a low-complexity approximation to LRU. On every cache hit, the policy LRU needs to move the accessed item to the most recently used position, at which point, to ensure consistency and correctness, it serializes cache hits behind a single global lock. CLOCK eliminates this lock contention, and, hence, can supp...

متن کامل

Improving Adaptive Replacement Cache (ARC) by Reuse Distance

Buffer caches are used to enhance the performance of file or storage systems by reducing I/O requests to underlying storage media. In particular, multi-level buffer cache hierarchy is commonly deployed on network file systems or storage systems. In this environment, the I/O access pattern on second-level buffer caches of file servers or storage controllers differs from that on upperlevel caches...

متن کامل

An Adaptive Dynamic Replacement Approach for a Multicast based Popularity Aware Prefix Cache Memory System

In this paper we have proposed an adaptive dynamic cache replacement algorithm for a multimedia servers cache system. The goal is to achieve an effective utilization of the cache memory which stores the prefix of popular videos. A replacement policy is usually evaluated using hit ratio, the frequency with which any video is requested. Usually discarding the least recently used page is the polic...

متن کامل

SARC: Sequential Prefetching in Adaptive Replacement Cache

Sequentiality of reference is an ubiquitous access pattern dating back at least to Multics. Sequential workloads lend themselves to highly accurate prediction and prefetching. In spite of the simplicity of the workload, design and analysis of a good sequential prefetching algorithm and associated cache replacement policy turns out to be surprisingly intricate. As first contribution, we uncover ...

متن کامل

Reduction in Cache Memory Power Consumption based on Replacement Quantity

Today power consumption is considered to be one of the important issues. Therefore, its reduction plays a considerable role in developing systems. Previous studies have shown that approximately 50% of total power consumption is used in cache memories. There is a direct relationship between power consumption and replacement quantity made in cache. The less the number of replacements is, the less...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003