Optimizing a dynamic order-picking process

نویسندگان

  • Yossi Bukchin
  • Eugene Khmelnitsky
  • Pini Yakuel
چکیده

This research studies the problem of batching orders in a dynamic, finite-horizon environment to minimize order tardiness and overtime costs of the pickers. The problem introduces the following trade-off: at every period, the picker has to decide whether to go on a tour and pick the accumulated orders, or to wait for more orders to arrive. By waiting, the picker risks higher tardiness of existing orders on the account of lower tardiness of future orders. We use a Markov Decision Process (MDP) based approach to set an optimal decision making policy. In order to evaluate the potential improvement of the proposed approach in practice, we compare the optimal policy with two naive heuristics: (1) “Go on tour immediately after an order arrives”, and, (2) “Wait as long as the current orders can be picked and supplied on time”. The optimal policy shows a considerable improvement over the naïve heuristics, in the range of 7%-99%, where the specific values depend on the picking process parameters. We have found that one measure, the slack percentage of the picking process, associated with the difference between the promised lead time and the single item picking time, predicts quite accurately the cost reduction generated by the optimal policy. The structure and the properties of the optimal solutions have led to the construction of a more comprehensive heuristic method. Numerical results show that the proposed heuristic, MDP-H, outperforms the naïve heuristics in all experiments. As compared to the optimal solution, MDP-H provides close to optimal results for a slack of up to 40%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The optimization of a picker to product Order Picking System: a supporting decision tool based on a multi-parametric simulation approach

Modern fulfilment centers need to process a far higher volume of smaller orders with increasing picking costs. These picking costs can be up to 60% of total warehousing costs. Order picking is a process of gathering requested stock keeping units one order at a time, while picking operations involve a lot of large and medium-sized companies which belong to many industrial and service sectors. A ...

متن کامل

Stochastic bounds for order flow times in warehouses with remotely located order-picking workstations

This paper focuses on the mathematical analysis of order flow times in parts-to-picker warehouses with remotely located order-picking workstations. To this end, a polling system with a new type of arrival process and service discipline is introduced as a model for an order-picking workstation. Stochastic bounds are deduced for the cycle time, which corresponds to the order flow time. These boun...

متن کامل

Integrated Order Batching and Distribution Scheduling in a Single-block Order Picking Warehouse Considering S-Shape Routing Policy

In this paper, a mixed-integer linear programming model is proposed to integrate batch picking and distribution scheduling problems in order to optimize them simultaneously in an order picking warehouse. A tow-phase heuristic algorithm is presented to solve it in reasonable time. The first phase uses a genetic algorithm to evaluate and select permutations of the given set of customers. The seco...

متن کامل

Order Batching in Order Picking Warehouses: A Survey of Solution Approaches

Order picking is a warehouse function dealing with the retrieval of articles from their storage location in order to satisfy a given demand specified by customer orders. Of all warehouse operations, order picking is considered to include the most cost-intensive ones. Even though there have been different attempts to automate the picking process, manual order picking systems are still prevalent ...

متن کامل

Three-Phase Modeling of Dynamic Kill in Gas-Condensate Well Using Advection Upstream Splitting Method Hybrid Scheme

Understanding and modeling of three-phase transient flow in gas-condensate wells play a vital role in designing and optimizing dynamic kill procedure of each well that needs to capture the discontinuities in density, geometry, and velocity of phases but also the effect of temperature on such parameters. In this study, two-phase Advection-Upstream-Splitting-Method (AUSMV) hybrid scheme is extend...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2012