Segmentation of Brain MR Images via Sparse Patch Representation

نویسندگان

  • Tong Tong
  • Robin Wolz
  • Joseph V. Hajnal
  • Daniel Rueckert
چکیده

Recently, patch-based segmentation has been proposed for brain MR images. However, the segmentation accuracy of this method depends on similarities over small image patches, which may not be an optimal estimator. In this paper, we propose a new segmentation strategy based on patch reconstruction rather than patch similarity. In the proposed method, the training patch library is considered as a dictionary, and the target patch is modeled as a sparse linear combination of the atoms in the dictionary. The sparse representation is naturally discriminative, which presents an entirely data-driven approach to patchselection and label definition. This Sparse Representation Classification (SRC) strategy produces segmentation results that compare favourably to existing approaches. In addition, a smoothing term is added to the cost function of the sparse coding technique, making the proposed method more robust. To the best of our knowledge, the sparse representation technique has never been used in brain segmentation. In a leave-one-out validation, the proposed method yields a median Dice coefficient of 0.871 for hippocampus on 202 ADNI images, which is competitive compared with state-of-the-art methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segmentation of neonatal brain MR images using patch-driven level sets

The segmentation of neonatal brain MR image into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), is challenging due to the low spatial resolution, severe partial volume effect, high image noise, and dynamic myelination and maturation processes. Atlas-based methods have been widely used for guiding neonatal brain segmentation. Existing brain atlases were generally constructed...

متن کامل

Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation

Segmentation of infant brain MR images is challenging due to poor spatial resolution, severe partial volume effect, and the ongoing maturation and myelination processes. During the first year of life, the brain image contrast between white and gray matters undergoes dramatic changes. In particular, the image contrast inverses around 6-8months of age, where the white and gray matter tissues are ...

متن کامل

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

Integration of Sparse Multi-modality Representation and Geometrical Constraint for Isointense Infant Brain Segmentation

Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination process. During the first year of life, the signal contrast between white matter (WM) and gray matter (GM) in MR images undergoes inverse changes. In particular, the inversion of WM/GM signal contrast appears around 6-8 months of age, wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012