Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.

نویسندگان

  • Seong-Gi Kim
  • Seiji Ogawa
چکیده

After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Video-assisted transmitral resection of primary cardiac lipoma originated from the left ventricular apex.

ADVANCE-MPI trial results. J Am Coll Cardiol Imaging 2008;1:307–16. 27. Parkes MJ. Breath-holding and its breakpoint. Exp Physiol 2006;91:1–15. 28. Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990;14: 68–78. 29. Hess A, Stiller D, Kaulisch T, Heil P, Scheich H. New insights into the hemody...

متن کامل

The physics of functional magnetic resonance imaging (fMRI).

Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and...

متن کامل

Microsoft Word - ISMRM2009-000775.DOC

INTRODUCTION Synchronized low-frequency fluctuations in the resting-state functional MRI (fMRI) signal have been suggested to be associated with functional connectivity in brain networks (1). However, the underlying mechanism of this connectivity is still poorly understood. To better interpret the resting signal, we examined spontaneous fluctuations at the level of cerebral metabolic rate of ox...

متن کامل

Pii: S1388-2457(02)00038-x

Functional magnetic resonance imaging (fMRI) is an emerging methodology which provides various approaches to visualizing regional brain activity non-invasively. Although the exact mechanisms underlying the coupling between neural function and fMRI signal changes remain unclear, fMRI studies have been successful in confirming task-specific activation in a variety of brain regions, providing conv...

متن کامل

Mapping functional connectivity based on synchronized CMRO2 fluctuations during the resting state

Synchronized low-frequency fluctuations in the resting state functional MRI (fMRI) signal have been suggested to be associated with functional connectivity in brain networks. However, the underlying mechanism of this connectivity is still poorly understood, with the synchronized fluctuations could either originate from hemodynamic oscillations or represent true neuronal signaling. To better int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

دوره 32 7  شماره 

صفحات  -

تاریخ انتشار 2012