Effects of bone morphogenic proteins on neural precursor cells and regulation during central nervous system injury.
نویسندگان
چکیده
Bone morphogenic proteins (BMPs) are well known for their influence on cell fate determination, proliferation and differentiation during early embryogenesis. Here, we review evidence for BMPs playing an additional, ongoing role in the proliferation and differentiation of neural precursor and progenitor cells in postnatal and adult central nervous system (CNS) and in CNS injury. The effects of BMPs on CNS cells have been studied using primary cultures of neural precursor and oligodendrocyte lineage cells. In addition, transgenic mice have been used to investigate in vivo effects of altering BMP pathway activation, and rodent models of CNS injury have been used to examine endogenous regulation of BMPs. These results have shown that BMPs promote production of astrocytes and inhibit production and maturation of oligodendroglia. The effects of BMPs on neurogenesis could be dependent on the origin of precursor cells or on the specifics of the microenvironment of the cell niche, as there are reports of inhibition and promotion of neurogenesis by BMPs. There is emerging evidence that BMPs are upregulated in several models of CNS injury; however, the effects of this regulation have not been well characterised. Understanding of the function of endogenous BMP regulation is important for determining how modulation of BMP signalling could improve repair following CNS injury.
منابع مشابه
iTRAQ-based proteomics profiling of Schwann cells before and after peripheral nerve injury
Objective(s): Schwann cells (SCs) have a wide range of applications as seed cells in the treatment of nerve injury during transplantation. However, there has been no report yet on kinds of proteomics changes that occur in Schwann cells before and after peripheral nerve injury.Materials and Methods: Activated Schwann cells (ASCs) and normal Schwann cells (NSCs) were obtained from adult Wistar ra...
متن کاملHarvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells
In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...
متن کاملProtective Role of Hypothermia Against Heat Stress in Differentiated and Undifferentiated Human Neural Precursor Cells: A Differential Approach for the Treatment of Traumatic Brain Injury
Introduction: The present study aimed to explore protective mechanisms of hypothermia against mild cold and heat stress on highly proliferative homogeneous human Neural Precursor Cells (NPCs) derived from Subventricular Zone (SVZ) of human fetal brain. Methods: CD133+ve enriched undifferentiated and differentiated human NPCs were exposed to heat stress at 42°C. Then, Western-blot qua...
متن کاملBone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury
Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS). The bone morphogenetic proteins (BMPs), in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent ...
متن کاملCanonical Wnt signalling requires the BMP pathway to inhibit oligodendrocyte maturation
OLs (oligodendrocytes) are the myelinating cells of the CNS (central nervous system), wrapping axons in conductive sheathes to ensure effective transmission of neural signals. The regulation of OL development, from precursor to mature myelinating cell, is controlled by a variety of inhibitory and inductive signalling factors. The dorsal spinal cord contains signals that inhibit OL development, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuro-Signals
دوره 17 4 شماره
صفحات -
تاریخ انتشار 2009