A recombinant, infectious human parainfluenza virus type 3 expressing the enhanced green fluorescent protein for use in high-throughput antiviral assays.
نویسندگان
چکیده
The ability to rescue an infectious, recombinant, negative-stranded, RNA virus from a complementary DNA (cDNA) clone, has led to new opportunities for measuring viral replication from a viral expressed reporter gene. In this study, the enhanced green fluorescent protein (EGFP) gene was inserted into the human parainfluenza virus type 3 (HPIV-3) antigenome and a recombinant, infectious virus was rescued. Maximum EGFP expression levels, measured by fluorescence, were seen at day 3. Comparison of a 3-day, viral expressed EGFP fluorescence assay to a 7-day, neutral red assay, based on complete cell destruction in virus infected MA-104 cells, yielded Z'-factor values of 0.83 and 0.70, respectively. A 3-day, endpoint EGFP-based antiviral assay and a 7-day, endpoint neutral red based antiviral assay were run in parallel to establish antiviral sensitivity profiles of 23 compounds based on selective index (SI) values. Using an SI threshold of 10, the EGFP-based antiviral assay had a sensitivity of 100% and a specificity of 54%. Thus, the use of an EGFP-based antiviral assay for testing potential antiviral compounds against HPIV-3 in a high-throughput format may be justified.
منابع مشابه
Transient expression of green fluorescent protein in radish (Raphanus sativus) using a turnip mosaic virus based vector
It is possible to use transgenic plants, as bioreactors, for the production of recombinant inexpensive chemicals and drug components. Transient gene expression is an appropriate alternative to stable transformation because it allows an inexpensive and rapid method for expression of recombinant proteins in plant tissues. In recent years, plant viral vectors have been increasingly developed as su...
متن کاملRecombinant green fluorescent protein-expressing human cytomegalovirus as a tool for screening antiviral agents.
A recombinant human cytomegalovirus (AD169-GFP) expressing green fluorescent protein was generated by homologous recombination. Infection of human fibroblast cultures with AD169-GFP virus produced stable and readily detectable amounts of GFP signals which were quantitated by automated fluorometry. Hereby, high levels of sensitivity and reproducibility could be achieved, compared to those with t...
متن کاملRecombinant Pseudorabies Virus (PRV) Expressing Firefly Luciferase Effectively Screened for CRISPR/Cas9 Single Guide RNAs and Antiviral Compounds.
A Pseudorabies virus (PRV) variant has emerged in China since 2011 that is not protected by commercial vaccines, and has not been well studied. The PRV genome is large and difficult to manipulate, but it is feasible to use clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. However, identification of single guide RNA (sgRNA) through screening is critical to the ...
متن کاملConstruction and Characterization of a Recombinant Human Respiratory Syncytial Virus Encoding Enhanced Green Fluorescence Protein for Antiviral Drug Screening Assay
Human respiratory syncytial virus (RSV) is the single most important cause of lower respiratory tract disease in infants and young children and a major viral agent responsible for respiratory tract disease in immunosuppressed individuals and the elderly, but no vaccines and antiviral drugs are available. Herein the recombinant RSV (rRSV) encoding enhanced green fluorescence protein (EGFP, rRSV-...
متن کاملGenetically Engineered Mesenchymal Stem Cells Stably Expressing Green Fluorescent Protein
Objective(s) Mesenchymal stem cells (MSCs) are nonhematopoietic stromal cells that are capable of differentiating into and contribute to the regeneration of mesenchymal tissues. Human mesenchymal stem cells (hMSCs) are ideal targets in cell transplantation and tissue engineering. Enhanced green fluorescent protein (EGFP) has been an important reporter gene for gene therapy. The aim of this stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antiviral research
دوره 82 1 شماره
صفحات -
تاریخ انتشار 2009