Hereditary right Jacobson radicals of type-1(e) and 2(e) for right near-rings
نویسندگان
چکیده
Near-rings considered are right near-rings. In this paper two more radicals, the right Jacobson radicals of type-1(e) and 2(e), are introduced for near-rings. It is shown that they are Kurosh-Amitsur radicals (KAradicals) in the class of all near-rings and are ideal-hereditary radicals in the class of all zero-symmetric near-rings. Different kinds of examples are also presented.
منابع مشابه
Kurosh-Amitsur Right Jacobson Radical of Type 0 for Right Near-Rings
By a near-ring we mean a right near-ring. J 0 , the right Jacobson radical of type 0, was introduced for near-rings by the first and second authors. In this paper properties of the radical J 0 are studied. It is shown that J 0 is a Kurosh-Amitsur radical KA-radical in the variety of all near-rings R, in which the constant part Rc of R is an ideal of R. So unlike the left Jacobson radicals of ty...
متن کاملProjective maximal submodules of extending regular modules
We show that a projective maximal submodule of afinitely generated, regular, extending module is a directsummand. Hence, every finitely generated, regular, extendingmodule with projective maximal submodules is semisimple. As aconsequence, we observe that every regular, hereditary, extendingmodule is semisimple. This generalizes and simplifies a result of Dung and Smith. As another consequen...
متن کاملA radical for right near-rings: The right Jacobson radical of type-0
The notions of a right quasiregular element and right modular right ideal in a near-ring are initiated. Based on these J 0(R), the right Jacobson radical of type-0 of a near-ring R is introduced. It is obtained that J 0 is a radical map andN(R)⊆ J 0(R), whereN(R) is the nil radical of a near-ring R. Some characterizations of J 0(R) are given and its relation with some of the radicals is also di...
متن کاملOn n-coherent rings, n-hereditary rings and n-regular rings
We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.
متن کاملOn a generalization of central Armendariz rings
In this paper, some properties of $alpha$-skew Armendariz and central Armendariz rings have been studied by variety of others. We generalize the notions to central $alpha$-skew Armendariz rings and investigate their properties. Also, we show that if $alpha(e)=e$ for each idempotent $e^{2}=e in R$ and $R$ is $alpha$-skew Armendariz, then $R$ is abelian. Moreover, if $R$ is central $alpha$-skew A...
متن کامل