TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival
نویسندگان
چکیده
Mutations in either the TSC1 or TSC2 tumor suppressor gene are responsible for Tuberous Sclerosis Complex. The gene products of TSC1 and TSC2 form a functional complex and inhibit the phosphorylation of S6K and 4EBP1, two key regulators of translation. Here, we describe that TSC2 is regulated by cellular energy levels and plays an essential role in the cellular energy response pathway. Under energy starvation conditions, the AMP-activated protein kinase (AMPK) phosphorylates TSC2 and enhances its activity. Phosphorylation of TSC2 by AMPK is required for translation regulation and cell size control in response to energy deprivation. Furthermore, TSC2 and its phosphorylation by AMPK protect cells from energy deprivation-induced apoptosis. These observations demonstrate a model where TSC2 functions as a key player in regulation of the common mTOR pathway of protein synthesis, cell growth, and viability in response to cellular energy levels.
منابع مشابه
Identification of an AMPK Phosphorylation Site in Drosophila TSC2 (gigas) that Regulate Cell Growth
AMP-activated protein kinase (AMPK) is an important metabolic regulator that mediates cellular adaptation to diverse stresses. One of the AMPK substrates, tuberous sclerosis complex 2 (TSC2), was suggested to mediate AMPK-induced silencing of mTOR complex 1 (mTORC1) signaling that is critical for cell growth. However, it is not known whether the AMPK-dependent TSC2 phosphorylation, originally o...
متن کاملRegulation of mTOR and cell growth in response to energy stress by REDD1.
The tuberous sclerosis tumor suppressors TSC1 and TSC2 regulate the mTOR pathway to control translation and cell growth in response to nutrient and growth factor stimuli. We have recently identified the stress response REDD1 gene as a mediator of tuberous sclerosis complex (TSC)-dependent mTOR regulation by hypoxia. Here, we demonstrate that REDD1 inhibits mTOR function to control cell growth i...
متن کاملDeregulated G1-S control and energy stress contribute to the synthetic-lethal interactions between inactivation of RB and TSC1 or TSC2.
Synthetic lethality is a potential strategy for cancer treatment by specifically promoting the death of cancer cells with particular defects such as the loss of the RB (RB1) tumor suppressor. We previously showed that inactivation of both RB and TSC2 induces synergistic apoptosis during the development of Drosophila melanogaster and in cancer cells. However, the in vivo mechanism of this synthe...
متن کاملHypoxia-induced energy stress regulates mRNA translation and cell growth.
Oxygen (O2) deprivation, or hypoxia, has profound effects on cell metabolism and growth. Cells can adapt to low O2 in part through activation of hypoxia-inducible factor (HIF). We report here that hypoxia inhibits mRNA translation by suppressing multiple key regulators, including eIF2alpha, eEF2, and the mammalian target of rapamycin (mTOR) effectors 4EBP1, p70S6K, and rpS6, independent of HIF....
متن کاملLysosomal recruitment of TSC2 is a universal response to cellular stress.
mTORC1 promotes cell growth and is therefore inactivated upon unfavourable growth conditions. Signalling pathways downstream of most cellular stresses converge on TSC1/2, which serves as an integration point that inhibits mTORC1. The TSC1/2 complex was shown to translocate to lysosomes to inactivate mTORC1 in response to two stresses: amino-acid starvation and growth factor removal. Whether oth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 115 شماره
صفحات -
تاریخ انتشار 2003