Inverse Scattering Theory for One-dimensional Schrödinger Operators with Steplike Periodic Potentials

نویسنده

  • ANNE BOUTET
چکیده

We develop direct and inverse scattering theory for one-dimensional Schrödinger operators with steplike potentials which are asymptotically close to different finite-gap periodic potentials on different half-axes. We give a complete characterization of the scattering data, which allow unique solvability of the inverse scattering problem in the class of perturbations with finite second moment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Scattering Theory for One-dimensional Schrödinger Operators with Steplike Finite-gap Potentials

We develop direct and inverse scattering theory for one-dimensional Schrödinger operators with steplike potentials which are asymptotically close to different finite-gap potentials on different half-axes. We give a complete characterization of the scattering data, which allow unique solvability of the inverse scattering problem in the class of perturbations with finite second moment.

متن کامل

Reconstruction of the Transmission Coefficient for Steplike Finite-gap Backgrounds

We consider scattering theory for one-dimensional Jacobi operators with respect to steplike quasi-periodic finite-gap backgrounds and show how the transmission coefficient can be reconstructed from minimal scattering data. This generalizes the Poisson–Jensen formula for the classical constant background case.

متن کامل

Strategies in localization proofs for one-dimensional random Schrödinger operators

Recent results on localization, both exponential and dynamical, for various models of one-dimensional, continuum, random Schrödinger operators are reviewed. This includes Anderson models with indefinite single site potentials, the Bernoulli– Anderson model, the Poisson model, and the random displacement model. Among the tools which are used to analyse these models are generalized spectral avera...

متن کامل

Schrödinger Operators and Associated Hyperbolic Pencils

For a large class of Schrödinger operators, we introduce the hyperbolic quadratic pencils by making the coupling constant dependent on the energy in the very special way. For these pencils, many problems of scattering theory are significantly easier to study. Then, we give some applications to the original Schrödinger operators including one-dimensional Schrödinger operators with L– operator-va...

متن کامل

Fourier Method for One Dimensional Schrödinger Operators with Singular Periodic Potentials

By using quasi–derivatives, we develop a Fourier method for studying the spectral properties of one dimensional Schrödinger operators with periodic singular potentials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007