VaERD15, a Transcription Factor Gene Associated with Cold-Tolerance in Chinese Wild Vitis amurensis
نویسندگان
چکیده
Early responsive to dehydration (ERD) genes can be rapidly induced to counteract abiotic stresses, such as drought, low temperatures or high salinities. Here, we report on an ERD gene (VaERD15) related to cold tolerance from Chinese wild Vitis amurensis accession 'Heilongjiang seedling'. The full-length VaERD15 cDNA is 685 bp, including a 66 bp 5'-untranslated region (UTR), a 196 bp 3'-UTR region and a 423 bp open reading frame encoding 140 amino acids. The VaERD15 protein shares a high amino acid sequence similarity with ERD15 of Arabidopsis thaliana. In our study, VaERD15 was shown to have a nucleic localization function and a transcriptional activation function. Semi-quantitative PCR and Western blot analyses showed that VaERD15 was constitutively expressed in young leaves, stems and roots of V. amurensis accession 'Heilongjiang seedling' plants, and expression levels increased after low-temperature treatment. We also generated a transgenic Arabidopsis Col-0 line that over-expressed VaERD15 and carried out a cold-treatment assay. Real-time quantitative PCR (qRT-PCR) and Western blot analyses showed that as the duration of cold treatment increased, the expression of both gene and protein levels increased continuously in the transgenic plants, while almost no expression was detected in the wild type Arabidopsis. Moreover, the plants that over-expressed VaERD15 showed higher cold tolerance and accumulation of proline, soluble sugars, proteins, malondialdehyde and three antioxidases (superoxide dismutase, peroxidase, and catalase). Lower levels of relative ion leakage also occurred under cold stress. Taken together, our results indicate that the transcription factor VaERD15 was induced by cold stress and was able to enhance cold tolerance.
منابع مشابه
Chinese Wild-Growing Vitis amurensis ICE1 and ICE2 Encode MYC-Type bHLH Transcription Activators that Regulate Cold Tolerance in Arabidopsis
Winter hardiness is an important trait for grapevine breeders and producers, so identification of the regulatory mechanisms involved in cold acclimation is of great potential value. The work presented here involves the identification of two grapevine ICE gene homologs, VaICE1 and VaICE2, from an extremely cold-tolerant accession of Chinese wild-growing Vitis amurnensis, which are phylogenetical...
متن کاملConstruction of a cDNA library of the Chinese wild Vitis amurensis under cold stress and analysis of potential hardiness-related expressed sequence tags.
A cDNA library of Chinese wild Vitis amurensis, which is the most cold-resistant species in the genus Vitis, was constructed using young leaves of seedlings of the clone Heilongjiang potted and subjected to cold stress. The leaves were harvested at various times after cold stress for total RNA extraction, which was used to generate expressed sequence tags (ESTs). The titer of the original libra...
متن کاملGenome Wide Transcriptional Profile Analysis of Vitis amurensis and Vitis vinifera in Response to Cold Stress
Grape is one of the most important fruit crops worldwide. The suitable geographical locations and productivity of grapes are largely limited by temperature. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding that of Vitis vinifera, the dominant cultivated species of grapevine. However, the molecular mechanisms that contribute to the enhanced freezing tolerance...
متن کاملIsolation and expression characterization of CBF2 in vitis amurensis with stress
The transcription factor VaCBF2, which interacts with C-repeat/DRE and its promoter, was isolated from Vitis amurensis. The VaCBF2 amino acid sequence contained a conserved AP2 domain of 56 amino acids and a potential nuclear localization sequence. The sequence of VaCBF2 showed a high level of homology with other CBF2 family members. Phylogenetic analysis showed that the amino acid sequences ma...
متن کاملAn efficient method for transgenic callus induction from Vitis amurensis petiole
Transformation is the main platform for genetic improvement and gene function studies in plants. However, the established somatic embryo transformation system for grapevines is time-consuming and has low efficiency, which limits its utilization in functional genomics research. Vitis amurensis is a wild Vitis species with remarkable cold tolerance. The lack of an efficient genetic transformation...
متن کامل